Conferences

30.02. Laboratory of Acoustic Methods for Materials Research


Main courses of discovery

  • Development of the scientific foundations of the methodology and principles of studying the structure of materials of different classes based on ideas about the structural sensitivity of acoustic properties in the frequency, time and frequency-time domains
  • Development of new methods of acoustic diagnostics with increased accuracy and informative, which allow identifying the features of the structure and controlling their evolution during the manufacturing and operation process;
  • Research of the complex of physical, mechanical and structural characteristics of materials by resonance and impulse acoustic methods

Theme of scientific research

Non-destructive acoustic methods of research and evaluation of materials and products from them

Best results

  • Theoretical model of the propagation of longitudinal and transverse elastic waves in materials with two-dimensional (crack-like) defects has been developed, which takes into account the dependence of elastic behavior on the stress-strain state of the material, and allows assessing the defectiveness of the material based on the change in the measured acoustic characteristics
  • Computer-oriented program for solving the inverse problem of the theory of elasticity has been developed - calculation of the elastic constants of isotropic and anisotropic materials based on the experimentally determined resonance spectrum of samples
  • Methods for determining elastic moduli of:

           - materials with a structure of cubic symmetry, which is based on measuring the velocities of a longitudinal elastic wave; 
           - materials with defects, which takes into account the dependence of resonance frequencies of sample oscillations on the amplitude, were invented

  • Methods of determining the defectiveness of materials, in particular powder materials, based on the resonance characteristics of samples (parts) were developed (protected by 4 invention patents)
  • Using the developed acoustic methods, the set of characteristics of linear and nonlinear elasticity, as well as the damping ability of porous and compact powder ceramic (Al2O3, Si3N4, HAp), metal (Fe, Ti, Al and its alloys PA-2, AlMg, Al-6Cu-0.4Mn) and composite materials based on them, reinforced with micro- and nanoparticles, were investigated.
  • The universality of revealed nonlinear acoustic phenomena was established, including slow dynamics, distortion of the resonance curve, linear amplitude dependence of the resonance frequency and internal friction, distort ion of the shape of oscillations in the time and frequency-time domains and the related effect of generating the second harmonic in the frequency spectrum of oscillations.
  • It was established that the single-phase compound Ti3Sn exhibits unusual nonlinear behavior; elasticity decreases completely reversibly with deformation, increases both with frequency and with temperature (343 K to 673 K); the damping is extremely high and decreases with frequency, but is independent on strain. The results indicate the presence of a phase transition at about 350 K. The evolution of the structure during the deformation process indicates the activation of the twinning mechanism, which can cause nonlinear elasticity and high energy dissipation.
  • With the use of non-destructive acoustic methods, the following techniques were developed and put into operation:

           - increasing the reliability of control during the manufacture of products from sintered powder materials;
           - determining the defectiveness of the material of main gas pipelines;
           - prediction of the protective properties of combined ceramic-polymer materials according to the criteria of armor resistance and survivability;
           - monitoring the state and predicting the serviceability of the MI-24 helicopter hydraulic steering system element;
           - testing defectiveness of the rollers of the rolling stock after restoring their surface.

Patents

1. Спосіб визначення дефектності матеріалу / О.В. Вдовиченко // Патент № 108145 UA. - №а201310398; заявл.23.08.2013; опубл. 25.03.2015, Бюл. №6.

2. Спосіб одержання спінених зливків алюмінію та алюмінієвих сплавів / Ю.Г. Безимянний, О.В.Бякова, О.О.Власов, Є.В.Картузов // Патент № 106114 UA. – №а201210504; заявл. 05.09.2012; опубл. 25.07.2014, Бюл.№ 14.

3. Спосіб визначення дефектності матеріалу. / О.В. Вдовиченко // Патент № 103716 UA. - №a201209288; заявл.30.07.2012; опубл. 11.11.2013, Бюл. 21.

4. Спосіб визначення модуля пружності матеріалів./ О.В. Вдовиченко// Патент № 90728 UA. - № a200801599; заявл.07.02.2008; опубл. 25.05.2010, Бюл.10.

5. Спосіб контролю дефектності матеріалів / О.В. Вдовиченко // Патент № 90002 UA. -№a2008 01598; заявл. 07.02.2008; опубл. 25.03.2010, Бюл.6.

6. Спосіб контролю дефектності матеріалів / О.В. Вдовиченко // Патент №82678 UA - №а200503968; заявл. 26.04.2005; опубл. 12.05.2008, Бюл.9.

7. Ультразвуковий спосіб визначення характеристик пружності / Ю.Г. Безимянний, В.М. Яковкін // Патент № 55549 UA. – опубл. 2003, бюл. №7.

8. Ультразвуковий спосіб вимірювання швидкості поширення пружної хвилі / Ю.Г.Безимянний, І.Г.Євко, К.А.Комаров // Патент на корисну модель № 96240 UA. – №а201408454; заявл. 24.07.2014; опубл. 26.01.2015, Бюл.№ 2.

9. Датчик хвиль зсуву / Ю.Г.Безимянний, О.В.Талько, Є.Є.Глазков // Деклараційний патент України на винахід № 70156 UА.; опубл. 15.09.2004, Бюл.№ 9.

Equipment

1. The original multifunctional apparatus complex to measure time, energy and frequency characteristics of elastic oscillations and elastic waves of different types. Time sensitivity is 10 ns, voltage sensitivity is 0,5mV, and frequency range is 0 – 20 MHz. The complex allows the realization of all known acoustic methods of nondestructive control, and the development and the approbation of new methods, working out diagnostic parameters etc. – regarding the task which is solved in the course of adaptation to the peculiarities of the object under control.

2. Equipment for resonant ultrasonic spectroscopy.

3. Electrodynamic vibration stand VEDS-200.

Possibilities

1. Measurement of integral and local acoustic characteristics of any acoustically transparent materials and products, as well as in individual elements of composites

2. Measurement of the characteristics of linear and nonlinear elasticity and unelasticity of materials, taking into account anisotropy and heterogeneity of properties in the temperature range from ambient to 973K.

3. Measurement of amplitude dependences of the damping ability of materials of different classes

4. Development of novel methods of quality and defect testing homogeneous, statistically homogeneous and heterogeneous materials and structures.

5. Stage-by-stage monitoring of powder and composite materials and products in the course of their manufacture.

6. Working out the technology of production of materials according to the criteria of linear and non-linear elasticity and internal friction

7. Determination of endurance limit based on 105…108 cycles at sound frequencies of oscillations

Publications

1. Modeling of multimodulus elastic behavior of damaged powder materials using computational micromechanics / A.V. Kuzmov, O.V. Vdovychenko, M.B. Shtern, O.G. Kirkova // Powder Metallurgy and Metal Ceramics. – 2021. – V.59. – P.491 – 498.

2. Acoustic determination of properties possessed by porous titanium / Y. Bezymyanniy, E. Koziratskiy, V. Nazarenko, O. Talko // Powder Metallurgy and Metal Ceramics. – 2020. – V.59. – P.46 – 56.

3. The influence of deformation modes on the structure and properties of Al–Mg–X powder composites. III. The influence of nanosized SiC powder content and deformation processing on the properties of AMg5 alloy powder composites/ K.A. Gogaev, V.S. Voropaev, O.V. Vdovychenko, Yu.N. Podrezov, N.F. Gadzyra, Ya.I. Yevich // Powder Metallurgy and Metal Ceramics. – 2019. – Vol.57. – P.499 – 505.

4. The influence of deformation modes on the structure and properties of Al–Mg–X powder composites. I. The influence of rolling conditions on the mechanical properties of aluminum powder ribbons strengthened with SiC nanoparticles / K.A. Gogaev, V.S. Voropaev, O.V. Vdovychenko, Yu.N. Podrezov, N.F. Gadzyra, Ya.I. Yevich // Powder Metallurgy and Metal Ceramics. – 2018. – Vol.57. – P.257 – 264.

5. Assessment of the protective properties of impact-resistant ceramic-polymer composites using acoustic nondestructive methods. / Yu.G. Bezimyanniy, L.R. Vyshniakov, O.V. Mazna, A.M. Vysotskyy, K.A. Komarov, O.V. Neshpor // Powder Metallurgy and Metal Ceramics. – 2018. – Vol.57. – P.242–249.

6. Mechanical behavior of homogeneous and nearly homogeneous Ti3Sn: Role of composition and microstructure / O. Vdovychenko, O. Ivanova, Yu. Podrezov, M. Bulanova, I. Fartushna // Materials and Design. – 2017. – Vol.125. – P.26-34.

7. Application of the methods of mechanical resonance for the detection of defects in steels of steam pipelines after operation / O.V. Vdovychenko // Materials Science. – 2014. – Vol.49. – P.461 – 468.

8. Closed-cell aluminum foam of improved sound absorption ability / Y.G. Bezimyniy, A. Byakova, S. Gnyloskurenko, N. Takashi // Journal of Metal Manufacture and Properties.– 2014. – No4. – P.445-454.

9. Dynamic mechanical behavior of intermetalliс Ti3Sn / O.V. Vdovychenko, M.V. Bulanova, Yu. Fartushna, A. Shcherecky // Scripta Materialia. – 2010. – Vol.62. – P.758 – 761.

10. Mechanical properties of powder titanium at different production stages. III. Contact formation in powder titanium based on examination of mechanical properties in sintering / Yu.N. Podrezov, V.А. Nazarenko, А.V. Vdovichenko, V.I.Danilenko, O.S. Koryak, Ya.I. Evich // Powder Metallurgy and Metal Ceramics. – 2009. – Vol.48. – №3/4. – P.201 – 210.

11. Effect of polyethylene glycol content in compacts on structure of porous sintered Al2O3 / O.V. Vdovychenko, M.J. Baumann // Ceramics, Polish Ceramic Bulletin. – 2008. – Vol.101. – P.99 – 106.

12. Mechanical properties of powder titanium at different production stages. II. Mechanical behavior of porous titanium compacts / E.M. Borisovskaya, V.A. Nazarenko, Yu.N. Podrezov, O.S. Koryak, Ya.I. Evich, A.V. Vdovichenko // Powder Metallurgy and Metal Ceramics. – 2008. – Vol.47. – P.538 – 545.

13. Mechanical resonance spectroscopy of interparticle boundaries in high-density iron powder compacts / A.V. Vdovichenko, Yu.N. Podrezov, V.V. Skorokhod // Powder Metallurgy and Metal Ceramics. – 2008. – Vol.47. – P.366 – 372.

14. On the estimation of defects containing materials using extended non-linear theory of elasticity / O.V. Vdovychenko, V.V. Skorokhod, M.B. Shtern // Proc. Sympos. I “Functional and Structural Ceramic and Ceramic Matrix Composites”, E-MRS Fall Meeting, Warsaw, 2008, P. 70 – 75.

15. Effect of microstructure on Young’s modulus of extruded Al-SiC composites studied by resonant ultrasound spectroscopy / O.V. Vdovychenko, V.S. Voropaev, A.N. Slipenyuk // Journal of Materials Science. – 2006. – Vol.41. – N24. – P. 8329 – 8338.

16. Study of anisotropy in the properties of material prepared of powdered iron / Yu.G. Bezymyannyi, V.V. Skorokhod, O.V. Tal'ko, G.R. Fridman // Powder Metallurgy and Metal Ceramics. – 2006. – Vol.45. – P.181 – 189.