Конференції

   
В.М.Новиченко 2,
 
О. М.Грипачевський 3
 

1 Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
2 Технічний центр Національної академії наук України, Київ
3 Інститут металофізики ім. Г.В. Курдюмова НАН України, Київ
zoneipm@gmail.com

Usp. materialozn. 2024, 8/9:97-111
https://doi.org/10.15407/materials2024.08-09.010

Анотація


Посилання

1. Stoloff, N. S. (1998). Iron aluminides: present status and future prospects. Mater. Sci. Engineering A, Vol. 58, pp. 1—14. https://doi.org/10.1016/S0921- 5093%2898%2900909-5

2. Palm, M., Stein, F. and Dehm, G. (2019). Iron aluminides. Ann. Rev. Mater. Res., Vol. 49, pp. 297—326. https://doi.org/10.1146/annurev-matsci-070218-125911

3. Qiao, R., Gou, J., Yang, T., Zhang, Y., Liu, F., Ma, T. (2021). Enhanced damping capacity of ferromagnetic Fe—Ga alloys by introducing structural defects. J. Mater. Sci. & Technology, Vol. 84, pp. 173—181. https://doi.org/10.1016/j.jmst.2020.12.061

4. Konrad, J., Zaefferer, S., Schneider, A., Raabe, D., Frommeyer, G. (2005). Hot deformation behavior of a Fe3Al-binary alloy in the A2 and B2-order regimes. Intermetallics, Vol. 13, No. 12: Discuss. Meet. Dev. Innovative Iron Alum. Alloys, pp. 1304—1312. http://dx.doi.org/10.1016/j.intermet.2023.108083

5. Liu, C. S., George, E. P., Maziasz, P. J., Schneibel, J. H. (1998). Recent advances in B2 iron aluminide alloys: formation, fracture and alloy design. Mater. Sci. Engineering A., Vol. 258, No. 1—2, pp. 84—98. http://dx.doi.org/10.1016%2FS0921-5093(98)00921-6

6. Chengde, Gao, Zihao, Zeng, Shuping, Peng, Cijun, Shuai. (2022). Magnetostrictive alloys: Promising materials for biomedical applications. Bioactive Mater., Vol. 8, pp. 177—195. https://doi.org/10.1016/j.bioactmat.2021.06.025

7. Zhou, Y., Wang, B., Li, S., Huang, W. and Cao, S. (2008). Phase diagram of the iron-rich portion in the iron-gallium aluminum ternary system. Int. J. Mater. Res., Vol. 99 (3), pp. 251—256. https://doi.org/ 10.3139/146.101631

8. Restor, J. B., Wun-Fogle, M., Clark, A. E., Lograsso, T. A., Ross, A. R., Schlagel, D. L. (2002). Magnetostriction of ternary Fe—Ga—X alloys (X = Ni, Mo, Sn, Al). J. Appl. Phys., Vol. 91, No. 10, pp. 8225—8227. https://doi.org/ 10.1063/1.1452220

9. Golovin, I. S., Palacheva, V. V., Bazlov, A. I., Cifre, J., Pons, J. (2015). Structure and anelasticity of Fe3Ga and Fe3(Ga,Al) type alloys. J. Alloys Comp., Vol. 644, pp. 959—967. https://doi.org/10.1016/j.jallcom.2015.04.150

10. Tolochina, O. V. (2021). Technological principles of creating powder materials intermetallic Fe—Al system based. (Unpublished candidate thesis). IPM NASU, Kyiv, Ukrainian [in Ukrainian].

11. Honcharuk, D. A., Gripachevskyi, O. M., Khomenko, O. V., Molchanovska, H. M., Maksimova, G. O. (2022). Study of the peculiarities of the formation of the Fe alloy structure — 55% by mass. Ga. Scientific Notes., No. 73, pp. 171—177 [іn Ukrainian].

12. Okamoto, H. (1990). The Fe—Ga (Iron—Gallium) system. Bulletin of Alloy Phase Diagrams, Vol. 115, pp. 76—581. https://doi.org/10.1007/BF02841721

13. Metallography, microstructures, and phase diagrams. Aluminium and aluminium alloys. (1996). ASM Speciality Handbook/ Ed. J. R. Davis,

14. Kovalenko, V. S. (1981). Metallographic reagents. Directory. Мoskva: Metalurgyya, 120 p. [in Russian].

15. Murray, J. L. Fe—Al binary phase diagram. Alloy Phase Diagrams, ASM Int., 1992, p. 54.

16. Basariya, M. and Mukhopadhyay, N. (2018). Structural and mechanical behaviour of Al—Fe intermetallics. EBOOK (PDF) ISBN978-1-83881-298-0, pp. 226. https://doi.org/10.5772/intechopen.68256

17. Pochec, E. (2011). Fe—Al phase formation around SHS reactions under isothermal conditions. J. Alloys and Comp., Vol. 509 (4), pp. 1124—1128. http://dx.doi.org/10.1016/j.jallcom.2010.08.074

18. Connetable, D. and Maugis, P. (2008). First principle calculations of the k-Fe3AlC perovskite and ironealuminium intermetallics. Intermetallics, Vol. 16 (3), pp. 345—352. https://hal.science/hal-03590962v1

19. Mehed, A., Andryushchenko, V. A. (2014). The influence of the nonstoichiometry of the carbide phase of the Fe—Al—C system on its electronic structure and magnetic properties. Metallofiz. and Novitni Technol., Vol. 36, No. 11, pp. 1443— 1452 [in Russian]. https://doi.org/10.15407/mfint.36.11.1443

20. Golovin, I. S., Golovin, I. S., Palachev, V. V., Mohamed, A. K., Balagurov, A. M. (2020). Structure and properties of Fe—Ga alloys — promising materials for electronics. Physica metallov and metallovedenie, Vol. 121, No. 9, pp. 937—980 [in Russian]. https://doi.org/10.31857/S0015323020090053

21. Jamroziak, K., Roik, T. New antifriction composite materials based on tool steel grinding waste. WIT Transactions on Engineering Sci., 2019, Vol. 124, pp. 151— 159. https://doi org/doi:10.2495/MC190151