Конференції

     

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
i.goncharova@ipms.kyiv.ua
Usp. materialozn. 2024, 8/9:52-59
https://doi.org/10.15407/materials2024.08-09.005

Анотація


Посилання

1. Mutu, H. B., Ozer, A. (2024). Experimental and finite element analysis of ballistic properties of composite armor made of alumina, carbon and UHMWPE. Polymer Composites, Vol. 7. doi: 10.1002/pc.28739

2. Wilkins, M. L. (1978). Mechanics of penetration and perforation. Int. J. Eng. Sci., Vol. 16, pp. 793—807. https://doi.org/10.1016/0020-7225(78)90066-6

3. Jiao, L., Bailin, Zh., Kai, Zh., Biao, Y., Xiaoqiang, Y. (2019). Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures. Int. J. Impact. Eng., Vol. 126, pp. 160—171. https://doi.org/10.1016/j.ijimpeng.2018.12.012

4. Jia, D., Xu, Y., Wang, L., Zhu, J., Zhang, W. (2024). Study of the ballistic impact behavior of protective multi-Layer composite armor. Computer Modeling in Engineering and Sciences, Vol. 140 (1), pp. 171—199. https://doi.org/10.32604/cmes.2024.046703

5. Gehring, J. W. (1970). Theory of impact on thin targets and shields and correlation with experiment. High-Velocity Impact Phenomena / Ed. Ray Kinslow, Academic Press, 1970, pp. 105−156.

6. Walters, W., Williams, C., Normandia, M. (2006). An explicit solution of the Alekseevski–Tate penetration equations. Int. J. Impact. Eng., Vol. 33 (1), pp. 837—846. https://doi.org/10.1016/j.ijimpeng.2006.09.057

7. Milman, Yu. V., Chugunova, S. I., Goncharova, I. V., Goncharuk, V. A., Yefimov, N. A. (2006). Physics of deformation and fracture at impact loading and penetration. Int. J. Impact. Eng., Vol. 10, pp. 452—462. https://doi.org/10.1016/j.ijimpeng.2006.09.058

8. Alekseevskii, V. P. (1966). Penetration of a rod into a target at high velocity. Combust. Explos. Shock Waves, Vol. 1, 2, pp. 63—66. https://doi.org/10.1007/BF00749237

9. Tate, A. (1967). A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids, Vol. 15, pp. 387—399. https://doi.org/10.1016/0022- 5096(67)90010-5

10. Hill, R. (1985). The mathematical theory of plasticity. Oxford: Calderon Press.

11. Cheeseman, B., Gooch, W., Burkins, M. (2008). Ballistic evaluation of aluminum 2139-T8. Proc. 24th Int. Symposium on Ballistics, USA, New Orleans, Louisiana.

12. Jones, T. L., DeLorme, R. D. (2008). Development of ballistic specification for magnesium alloy AZ31B. Army Research Laboratory (USA). No. ARL-TR-4664. Retrieved from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=591b052523cec b0dc0bd59283750e4dee8c7d61b