Конференції

      

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
yupodrezov@ukr.net
Usp. materialozn. 2024, 8/9:30-40
https://doi.org/10.15407/materials2024.08-09.003

Анотація


Посилання

1. Azhazha, M., Vyugov, P. N., Lavrynenko, S. D., Lindt, K. A., Mukhachev, A. P., Pilipenko N. N. (1998). Zirconium and its alloys: production technologies, areas of application. Review, Harkiv: NNTS HFTI [in Russian].

2. Cernyaeva, T. P., Stukalov, A. I., Gritsina, V. M. (2002). The influence of oxygen on the mechanical properties of zirconium. Voprosy nauki i tehniki, No. 1, Series: vakuum, chistye materialy, sverhprovodniki (12), pp. 96—102 [in Russian].

3. Tenckhoff, E. (2005). Review of deformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium base alloys. J. ASTM Int., Vol. 2 (4), pp. 1—26.

4. Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., Yashiro, T. (1998). Design and mechanical properties of new β-type titanium alloys for implant materials. Mater. Sci. Engineering A, Vol. 243 (1—2), pp. 244—249. https://doi.org/10.1016/S0921-5093(97)00808-3

5. Williams, D. (2008). On the mechanisms of biocompatibility. Biomaterials, Vol. 29 (20), pp. 2941—2953. https://doi.org/10.1016/j.biomaterials.2008.04.023

6. Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Mater. Trans., Vol. A, 33 (3), pp. 477—486. https://doi.org/10.1007/s11661-002-0109-2

7. Girzhon, V., Smolyakov, A. V., Dmytrenko, T. A. (2017). Laser melting of zirconiumbased alloy in various gas environments. Metalofiz. Noveyshie tehnologii, Vol. 39, No. 8, pp. 1087—1095 [in Russian]. doi: 10.15407/mfint.39.08.1087

8. Minakov, N. V., Bloschanevich, A. M., Krapivka, N. D., Rudyk, N. D., Homenko, G. E. (2013). Comparative study of the effect of laser processing on the structure and hardness of the high-entropy alloy TiZrHfVNbTa and commercially pure titanium. Uprochnyayuschie tekhnologii i pokrytiya, No. 11 (107), pp. 11—14 [in Russian].

9. Minakov, N. V., Bloschanevich, A. M., Rudyk, N. D., Stegniy, A. I., Shurygin, B. V., Podrezov, Yu. N. (2018). The influence of laser processing on the structure and properties of the surface layers of deformable titanium alloy OT4, alloyed with B, Nb, C. Elektronnaya mikroskopiya i prochnost materialov, Iss. 24, pp. 59—64 [in Russian].

10. Okamoto, H. (2003). Mo—Zr (molybdenum-zirconium) supplemental literature review: Section III. J. Phase Equilibria, Vol. 24, No. 3, pp. 279. http://dx.doi.org/10.1361/105497103770330686

11. Okamoto, H. (1992). Nb—Zr (niobium-zirconium) phase diagram updates: Section HI. J. Phase Equilibria, Vol. 13, No. 5, pp. 577.

12. Aurelio, G., Fernández Guillermet, A., Cuello, G. J., Campo, J. (2001). Structural properties and stability of metastable phases in the Zr—Nb system: Part I. Systematics of quenching-and-aging experiments. Metallurgical and Mater. Trans. A, Vol. 32A, No. 8, pp. 1903—1910.

13. Predel, B. (2018). Crystallographic and thermodynamic data of binary alloys. Phase Equilibria, Vol. 12, New York: Springer US.

14. Guo, S. Q. (2009). Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc., Vol. 29, No. 6, pp. 995— 1011. doi: 10.1016/j.jeurceramsoc.2008.11.008

15. Dargusch, M. S., Bermingham, M. J., McDonald, S. D., StJohn, D. H. (2010). Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res., Vol. 25, pp. 1695—1700. doi:10.1557/JMR.2010.0233

16. Hao Wang. (2023). Effect of laser power on the microstructure and property of ZrB2/ZrC in-situ reinforced coatings on zirconium alloy by laser cladding. Vacuum, Vol. 213, July, 112104. https://doi.org/10.1016/j.vacuum.2023.112104