Конференції

   

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
nil2903@gmail.com
Usp. materialozn. 2024, 8/9:13-29
https://doi.org/10.15407/materials2024.08-09.002

Анотація


Посилання

1. Miracle, D. B. & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater., Vol. 122, pp. 448—511. https://doi.org/10.1016/j.actamat.2016.08.081

2. George, E. P., Curtin, W. A. & Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., Vol. 188, pp. 435—474. https://doi.org/10.1016/j.actamat.2019.12.015

3. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2021). Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical approach. Progress in Natural Science: Mater. Int., Vol. 31, pp. 95—104. https://doi.org/10.1016/j.pnsc.2020.11.006

4. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021). Modelling of shear stress field in glide plane in substitutional solid solutions. Usp. Materialozn., No. 3, pp. 24—37 [in Ukrainian]. https://doi.org/10.15407/materials2021.03.024

5. Nabarro, F. (1976). Solution and precipitation hardening. In P. Hirsch (Author), The Physics of Metals, pp. 152—188. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511760020.007

6. Labusch, R. (1981). Physical aspects of precipitation- and solid solution-hardening. Czech. J. Phys., Vol. 31, pp. 165—176. https://doi.org/10.1007/BF01959439

7. Varvenne, C., Luque, A. & Curtin, W. A. (2016). Theory of strengthening in fcc high entropy alloys. Acta Mater., Vol. 118, pp. 164—176. https://doi.org/10.1016/j.actamat.2016.07.040

8. Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. (2017). Solute strengthening in random alloys. Acta Mater., Vol. 124, pp. 660—683. https://doi.org/10.1016/j.actamat.2016.09.046

9. Nöhring, W. G. & Curtin, W. A. (2019). Correlation of microdistortions with misfit volumes in High Entropy Alloys. Scripta Mater., Vol. 168, pp. 119—123. https://doi.org/10.1016/j.scriptamat.2019.04.012

10. Bracq, G., Laurent-Brocq, M., Varvenne, C., Perrière, L., Curtin, W. A., Joubert, J. - M. & Guillot, I. (2019). Combining experiments and modeling  to explore the solid solution strengthening of high and medium entropy alloys. Acta Mater., Vol. 177, pp. 266—279. https://doi.org/10.1016/j.actamat.2019.06.050

11. Zaiser, M. (2002). Dislocation motion in a random solid solution. Philos. Mag. A, Vol. 82, No. 15, pp. 2869—2883. https://doi.org/10.1080/01418610208240071

12. Zhai, J. - H. & Zaiser, M. (2019). Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Engineering: A, Vol. 740—741, pp. 285— 294. https://doi.org/10.1016/j.msea.2018.10.010

13. Pasianot, R. & Farkas, D. (2020). Atomistic modeling of dislocations in a random quinary high-entropy alloy. Comp. Mater. Sci., Vol. 173, pp. 109366. https://doi.org/10.1016/j.commatsci.2019.109366

14. Lugovy, M., Slyunyayev, V., Brodnikovskyy, M. & Firstov, S. O. (2017). Calculation of solid solution strengthening in multicomponent high temperature alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Iss. 23, pp. 3—9 [in Ukrainian].

15. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2019). Additivity principle for thermal and athermal components of solid solution strengthening in multicomponent alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Iss. 25, pp. 26—34 [in Russian].

16. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021). Shape of dislocation line in stochastic shear stress field. Usp. Materialozn., No. 2, pp. 19—34 [in Ukrainian]. https://doi.org/10.15407/materials2021.02.019

17. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2022). Two components of shear stress field in glide plane in multicomponent alloys. Usp. materialozn., No. 4/5, pp. 12—24 [in Ukrainian]. https://doi.org/10.15407/materials2022.04-05.012

18. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2022). Evolution of dislocation line shape in multicomponent alloys under loading. Usp. Materialozn., No. 4/5, pp. 36—50 [in Ukrainian]. https://doi.org/10.15407/materials2022.04-05.036

19. Firstov, S. O. & Rogul, T. G. (2022). “Plateau” on temperature dependence of the critical shear stress in binary and multicomponent solid solutions and in pure metals. Metallofiz. Noveishie Tekhnol., Vol. 44, pp. 127—140 [in Ukrainian]. https://doi.org/10.15407/mfint.44.01.0127

20. Podolskiy, A. V., Tabachnikova, E. D., Voloschuk, V. V., Gorban, V. F., Krapivka, N. A. & Firstov, S. O. (2018). Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high entropy alloy at temperatures 4.2— 350 K. Mater. Sci. Engineering: A, Vol. 710, pp. 136—141. https://doi.org/10.1016/j.msea.2017.10.073

21. Firstov, S. O., Rogul, T. G., Krapivka, N. A. & Chugunova, S. I. (2018). Thermoactivation analysis of temperature dependence of a flow stress in solid solutions with a B.C.C. lattice. Metallofiz. Noveishie Tekhnol., Vol. 40, pp. 219— 234 [in Russian]. https://doi.org/10.15407/mfint.40.02.0219

22. Firstov, S. O. & Rogul, T. G. (2017). Thermoactivation analysis of the flow-stress– temperature dependence in the F.C.C. solid solutions. Metallofiz. Noveishie Tekhnol., Vol. 39, pp. 33—48 [in Russian]. https://doi.org/10.15407/mfint.39.01.0033

23. Okamoto, N. L., Yuge, K., Tanaka, K., Inui, H. & George, E. P. (2016). Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening. AIP Advances, Vol. 6, pp. 125008. https://doi.org/10.1063/1.4971371

24. Toda-Caraballo, I., Wrobel, J. S., Dudarev, S. L., Nguyen-Manh, D. & Rivera-Diaz-del-Castillo, P. E. (2015). Interatomic spacing distribution in multicomponent alloys. Acta Mater., Vol. 97, pp. 156—169. https://doi.org/10.1016/j.actamat.2015.07.010

25. Feynman, R. P. (1998). Statistical mechanics: A set of lectures. Boca Raton: CRC Press. https://doi.org/10.1201/9780429493034

26. Zakarian, D., Khachatrian, A., Firstov, S. (2019). Universal temperature dependence of Young’s modulus. Metal Powder Report, Vol. 74, No. 4, рр. 204— 206. https://doi.org/10.1016/j.mprp.2018.12.079

27. Firstov, S. O., Lugovskyi, Yu. F. (2023). Temperature dependence of the Young's modulus of metals with different crystal lattices in a wide temperature range. Usp. Materialozn., No. 6, pp. 3—14 [in Ukrainian]. https://doi.org/10.15407/materials2023.06.003

28. Firstov, S. O., Sarzhan, G. F. (2014). Temperature dependence of diffusion contstant. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 20, pp. 71—75 [in Russian].

29. Varshni, Y. P. (1970). Temperature dependence of the elastic constants. Phys. Rev. B, Vol. 2, pp. 3952—3958. https://doi.org/10.1103/PhysRevB.2.3952

30. Wachtman, J. B., Jr., Tefft, W. E., Lam, D. G., Jr. & Apstein, C. S. (1961). Exponential temperature dependence of Young's modulus for several oxides. Phys. Rev., Vol. 122, pp. 1754. https://doi.org/10.1103/PhysRev.122.1754

31. Labusch, R. (1970). A statistical theory of solid solution hardening. Phys. Stat. Sol., Vol. 41, pp. 659—669. https://doi.org/10.1002/pssb.19700410221

32. Touloukian, Y. S., Kirky, R. K., Taylor, R. E. & Desai, P. D. (1975). Thermophysical properties of matter, Thermal expansion: Metallic elements and alloys, TPRC Data Books. New York: Plenum Press. https://doi.org/10.1007/978-1-4757-1622-1

33. Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G. & George, E. P. (2015). Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Comp., Vol. 623, pp. 348—353. https://doi.org/10.1016/j.jallcom.2014.11.061