Conferences

ZrB2 ceramics with MoSi2, SiC and B4C additives: compaction kinetics, phase formation and creep resistance

  
L. I. Klimenko,
  

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
mykolabega@gmail.com
Usp. materialozn. 2023, 7:113-118
https://doi.org/10.15407/materials2023.07.012

Abstract

A study was carried out of the processes of compaction, structure formation and mechanical properties of ceramics based on zirconium boride with sintering-activating additives of boron, silicon and chromium carbides, as well as molybdenum silicide, obtained under hot pressing conditions in a CO atmosphere. In ZrB2—18% (vol.) B4C ceramics, the use of the B4C additive reduces the optimal hot pressing temperature to 1940 °C and accelerates the compaction process of the ceramics. The influence of the sample preparation background on high-temperature creep has been established, as a result of which either plastic flow of the material occurs over a wide temperature range, or a high temperature threshold for yield and brittle fracture. In ZrB2—SiC ceramics, during high-temperature plastic deformation both during sintering and in creep tests, a bidisperse structure with a submicrograined component is formed, which is responsible for high creep rates. In ZrB2—B4C ceramics there is no submicrograin component, which provides high creep resistance up to 2000 °C. The phase composition of ZrB2—MoSi2 ceramics changes dramatically during hot pressing; it is represented by a composition of a ZrB2 solid solution with the second phases of SiC and B4C, and in terms of creep resistance it occupies an intermediate position between two other ceramics.


Download full text

HOT PRESSING IN A CO ATMOSPHERE, CREEP RESISTANCE, DENSIFICATION KINETICS, SILICON, BORON AND CHROMIUM CARBIDES, STRENGTH AT 20О С, STRUCTURE, ZIRCONIUM BORIDE

References

1. Kuzenkova, M. A., Kislyi, P. S. (1966). The shrinkage of zirconium diboride. Poroshkovaya metallurgiya, No. 2, pp. 46—55 [in Russian].

2. Kuzenkova, M. A., Kislyi, P. S. (1966). Grain growth in zirconium diboride sintering. Poroshkovaya metallurgiya, No. 10, pp. 812—815 [in Russian].

3. Kislyi, P. S., Kuzenkova, M. A. (1976). Regularaties of sintering of zirconium diboride-molibdenum alloys. Poroshkovaya metallurgiya, Vol. 6, pp. 270—272 [in Russian].

4. Silvestroni, L., Sciti, D. (2010). Sintering behavior, microstructure, and mechanical properties: A comparison among pressureless sintered ultra-refractory carbides. Adv. Mater. Sci. Engineering. doi: https://doi.org/10.1155//835018

5. Talmy, I. G., Zaykoski, J. A., Opeka, M. M. (2008). High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3, and TaSi2. J. Amer. Ceram. Soc., Vol. 91, pp. 2250—2257. doi: https://doi.org/10.1111/j.1551- 2916.2008.02420.x

6. Opila, E., Levine, S., Lorincz, J. (2004). Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci., Vol. 39, pp. 5969—5977. doi: https://doi.org/10.1023/B:JMSC.0000041693.32531.d1

7. Grohsmeyer, R. J., Silvestroni, L., Hilmas, G. E., Monteverde, F., Fahrenholtz, W. G., D’Angió, A., Sciti, D. (2019). ZrB2—MoSi2 ceramics: a comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure. J. European Ceram. Soc., Vol. 39 [6], pp. 1939—1947. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.01.022

8. Sciti, D., Silvestroni, L., Nygren, M. (2008). Spark plasma sintering of ultra-high temperature ceramics with decreasing amount of MoSi2 as sintering aid. Zr- and Hf-borides. J. European Ceram. Soc., Vol. 28, pp. 1287—1296.

9. Silvestroni, L., Kleebe, H. J., Lauterbach, S., Müller, M., Sciti, D. (2010). Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: Densification mechanisms. J. Mater. Res., Vol. 25, pp. 828—834. doi: https://doi.org/10.1557/jmr.2010.0126

10. Guo, S. Q. (2009). Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. European Ceram. Soc., Vol. 29, pp. 995— 1011. doi: https://doi.org/10.1016/j.jeurceramsoc.2008.11.008

11. Gilli, N., Watts, J., Fahrenholtz, W. G., Sciti, D., Silvestroni, L. (2021). Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach. Composites B, Vol. 226, pp. 109—344. doi: https://doi.org/10.1016/j.compositesb.2021.109344

12. Vedel, D., Osipov, A., Melakh, L., Brodnikovskyi, M., Grigoriev O. (2023). Contact interaction and hot pressing of ZrB2—MoSi2 in CO/CO2 atmosphere. J. European Ceram. Soc., Vol. 43, is. 8, pp. 3025—3033.

13. Ordan’yan, S. S., Dmitriev, A., Bizhev, K., Stepanenko, E. (2018). Interaction in B4C—MeVB2 systems. Angewandte Chemie Int. Edition, Vol. 6 (11), pp. 951—952.

14. Grigoriev, O. N., Vinokurov, V. B., Klimenko, L. I., Bega, N. D., Danilenko, N. I. (2016). Sintering of zirconium diboride and phase transformations in the presence of Cr3C2. Powder Metallurgy and Metal Ceramics, Vol. 55, pp. 185—194. doi: https://doi.org/10.1007/s11106-016-9793-0

15. Grigoriev, O. N., Vinokurov, V. B., Galanov, B. A., Melakh, L. M., Bystrenko, A. V. (2018). Sintering of ultra-high-temperature ceramics: processes at grain boundaries and formation of properties. Science about materials: reaching that perspective, Vol. 1, Kiev: Akademperiodika, pp. 121—152 [in Russian].

16. Vinokurov, V. B., Kovalchenko, M. S., Klimenko, L. I., Bega, N. D., Mosina T. V. (2018). Kinetics of nonisothermal pressure sintering of zirconium diboride powder with additives of boron and chromium carbides in vacuum. Powder Metallurgy and Metal Ceram., Vol. 57, pp. 27—37. doi: https://doi.org/10.1007/s11106-018-9952-6

17. Silvestroni, L., Failla, S., Vinokurov, V., Neshpor, I., Grigoriev, O. (2019). Coreshell structure: An effective feature for strengthening ZrB2. Ceram. Scr. Mater., Vol. 160, pp. 1—4. doi: https://doi.org/10.1016/j.scriptamat.2018.09.024

18. Grigoriev, O., Neshpor, I., Vedel, D., Mosina, T., Silvestroni, L. (2021). Influence of chromium diboride on the oxidation resistance of ZrB2—MoSi2 and ZrB2—SiC ceramics. J. European Ceram. Soc., Vol. 41, pp. 2207—2214. doi: https://doi.org/10.1016/j.jeurceramsoc.2020.12.036

19. Reshetniak, M., Sobol, O. (2008). Enhanced analysis of the structure and substructural characteristics of nanocrystalline condensed and bulk materials of the quasi-binary system W2B5—TiB2 using the X-ray diffraction data processing program “New_profile”. Phys. Surface Engineering, Vol. 6, pp. 180—188.

20. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., Vol. 2, pp. 65—71. doi: https://doi.org/10.1107/s0021889869006558

21. Silvestroni, L., Failla, S., Neshpor, I., Grigoriev, O. (2018). Method to improve the oxidation resistance of ZrB2-based ceramics for reusable space systems. J. European Ceram. Soc., Vol. 38, pp. 2467—2476.

22. Tsai, R. L., Raj, R., Overview #18: (1982). Creep fracture in ceramics containing small amounts of liquid phase. Acta Metall., Vol. 30, No. 6, pp. 1043—1058.