Conferences

Hypothetical CeO2—Ln2O3 phase diagrams (Ln = yttrium lanthanides, Y2O3)

 
S. M. Lakiza 2,
  

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 Center of Excellence in Nanophotonics, Advanced Materials and New Technologies Based on Crystal Growth, Warsaw, Poland
alina.makudera@gmail.com

Usp. materialozn. 2023, 7:61-68
https://doi.org/10.15407/materials2023.07.006

Abstract

Based on the analysis of literature data from the experimentally constructed phase diagrams of CeO2—Ln2O3 systems (Ln = Tb—Lu), as well as the temperatures of polymorphic transformations of oxides of rare earth elements (REEs), approximate phase diagrams of the indicated system were constructed in the entire range of temperatures and concentrations. Cerium dioxide crystallizes in the cubic type of fluorite crystal lattice and has no polymorphic transformations in the entire temperature range until melting at 2400 ºC. The solubility based on CeO2 is higher than based on other lanthanide oxides. The components of the systems show complete solubility below solidus with the formation of solid solutions with a structure of the fluorite-type F. The appearance below the solidus regions of solid solutions based on polymorphic modifications of lanthanide oxides H, A, B and C with different width leads to the formation of cascades of peritectoid transformations. During the transition in the Tb— Lu series, their temperatures gradually increase, which is associated with an increase in the temperatures of polymorphic transformations of Tb—Lu oxides. Hypothetical phase diagrams of the CeO2—Ln2O3 series (Ln = Tb—Lu, Y) with adjustments according to such regularities of interaction during the transition from Tb to Lu. Experimental verification of the phase diagrams structure of the considered systems is possible when conducting experiments using increased pressures of oxygen-containing media, or by thermodynamic calculations.

 


Download full text

POLYMORPHIC TRANSFORMATION OF REE, CEO2, PHASE DIAGRAMS, RARE EARTH OXIDES, Y2O3

References

1. Lakiza, S. M., Hrechanjuk, M. І., Ruban, О. К., Red’ko, V. P., Hlabaj, M. S., Myloserdov, О. B., Dudnik, О. V., Prokhorenko, S. V. (2018). Thermal barrier coatings: current status, search and analysis. Powder Metallurgy and Metal Ceramics, Vol. 57, No. 1/2, pp. 82—113.  doi: https://doi.org/10.1007/s11106-018-9958-0

2. Longo, V., Podda, L. (1981). Phase equilibrium diagram of the system ceria-yttria for temperatures between 900 and 1700 ºC. J. Mater. Sci., Vol. 16, pp. 839—841.

3. Longo, V., and Podda, L. (1984). Relazioi tra le fasi allo stato solido nel sistema CeO2— ZrO2—Y2O3 tra 1700 e 1400 ºC. Ceramica (Florence), Vol. 37, No. 5, pp. 18—20.

4. Pepin, J. G., Vance, E. R, Mccarthy, G. J. (1981). Subsolidus phase relations in the systems CeO2—RE2O3 (RE2O3 = C-type) rare earth sesquioxide. J. Solid State Chem., Vol. 38, pp. 360—367.doi: https://doi.org/10.1016/0022-4596(81)90066-9

5. Hinatsu, Y., Muromura, T. (1986). Phase relations in the systems ZrO2—Y2O3—Nd2O3 and ZrO2—Y2O3—CeO2 . Mater. Res. Bull., Vol. 21, pp. 1343—1349. doi: https://doi.org/10.1016/0025-5408(86)90069-3

6. Parvulescu, V. I., Vasiliu, F., Segal, E. (1995). Termal behavior of CO2 laser-irradiated CeO2 doped with Yb2O3 . J. of Thermal Analysis, Vol. 45, pp. 1313—1322.

7. Andrievskaya, O. R., Red’ko, V. P., and Lopato, L. M. (2001). Interaction of cerium oxide with hafnium, zirconium and yttrium oxides at 1500 °C. Powder Metallurgy and Metal Ceramics, Vol. 40, No. 7/8, pp. 405—413.

8. Chavan, S. V., Mathews, M. D., Tyagi, A. K. (2004). Phase relations and thermal expansion studies in the ceria–yttria system. J. Amer. Ceram. Soc., Vol. 87, No. 10, pp. 1977—1980.doi: https://doi.org/10.1111/j.1151-2916.2004.tb06349.x

9. Mandal, B. P., Grover, V., Roy, M., Tyagi, A. K. (2007). X-Ray diffraction and Raman spectroscopic investigation on the phase relation in Yb2O3- and Tm2O3-substituted CeO2 . J. Amer. Soc., Vol. 90, is. 9, pp. 2961—2965.doi: https://doi.org/10.1111/j.1551- 2916.2007.01826.x

10. Andrievskaya, O. R., Gusarov, V. V., Kornienko, О. А., Sameljuk, А. V., Spasenova, L. M. (2012). Interaction of cerium and erbium oxides at temperature 1100 °С. Zb. nauk. prac PaT “UKRNDI VogneTryviv im. А. S. Berejnogo”, Charkiv: PaT “UKRNDIV im. А. S. Berejnogo”, No. 112, pp. 133—140 [in Russian].

11. Andrievskaya, O. R., Kornienko, О. А., Makudera, A. A., Sameljuk, А. V. (2013). Interaction of cerium and erbium oxides at temperature 1500 °С. Zb. nauk. prac PaT “UKRNDI VogneTryviv im. А. S. Berejnogo”, Charkiv: PaT “UKRNDIV im. А. S. Berejnogo”, No. 113, pp. 156—163 [in Russian].

12. Kornienko, О. А., Andrievskaya, O. R., Makudera, A. A., Subbota, I. S. (2013). Phase relationships in the system CeO2—Yb2O3 at temperature 1500 ºС. Sovremennye problemy fizicheskogo materialovedeniya, Кiyv: IPM NAN Ukrainy, Vyp. 22, pp. 3—9 [in Russian].

13. Lavrinenko, О. М., Bykov, О. І., Bataev, Ju. М., Bataev, М. М., Kornienko, О. А. (2020). Temperature influx on structure in the system CeO2—Yb2O3 . Visnyk Odeskogo Natsionalnogo universitetu. Seriya Chimiya, Т. 25, No. 3 (75), pp. 76—85 [in Ukrainian]. doi: https://doi.org/10.18524/2304-0947.2020.3(75).208388

14. Аndrievskya, О. R., Коrnienko, О. А., Bykov, О. І.., Sameljuk, А. V., Bohatyriova, Z. D. (2020). Interaction of ceria and erbia in air within temperature range 600—1500 °C. J. European Ceramic Soc., Vol. 40, No. 8, pp. 3098—3103. doi:https://doi.org/10.1016/j.jeurceramsoc.2020.03.002

15. Andrievskaya, O. R., Kornienko, O. A., Sameljuk, A. V., Sayir, A. (2020). Phase relation rtudies in the CeO2—Eu2O3 system at 600 to 1500 °С. J. European Ceramic Soc., Vol. 40, No. 3, pp. 751—758. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.10

16. Andrievskaya, O. R., Kornienko, O. A., Sameljuk, A. V., Bykov, A. I. (2019). Interaction of ceria and ytterbia in air within temperature range 600—1500 °C. J. European Ceramic Soc., Vol. 39, No. 9, pp. 2930—2935.doi: https://doi.org/10.1016/j.jeurceramsoc.2019.03.021

17. Kornienko, О. А. (2016). Interaction of oxides with cerium and terbium at 1100 °С. Visnyk Dnipropetrovskogo universiteta. Seriya Khimia, Vyp. 24 (2), pp. 94—101 [in Ukrainian].

18. Andrievskaya, О. R., Bogatyriova, J. D., Kornienko, О. А., Sameljuk, А. V., Subota, І. S. (2014). Interaction of oxides between cerium and europe at temperature 1500 °С. Sovremennye problemy fizicheskogo materialovedeniya, Кiyv: IPM NAN Ukrainy, Vyp. 23, pp. 19—27 [in Ukrainian].

19. Kornienko, О. А. (2014). Phase relationships in the system CeO2—Dy2O3 at temperature 1500 °C. Sovremennye problemy fizicheskogo materialovedeniya, Кiyv: IPM NAN Ukrainy, Vyp. 23, pp. 3—9 [in Ukrainian].

20. Grover, V., Chavan, S. V., Sengupta, P., Tyagi, A. K. (2010). CeO2—YO1.5— NdO1.5 system: An extensive phase relation study. J. European Ceramic Soc., No. 30, pp. 3137—3143. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.06.005

21. Du, Y., Yashima, M., Koura, T., Kakihana, M., and Yoshimura, M. (1996). CALPHAD. Comput. Coupling Phase Diagrams Thermochem., Vol. 20, No. 1, pp. 95—108.

22. Zhang, H., Liao, S., Guan, Sh. (2012). Preparation and thermal conductivity of Dy2Ce2O7 ceramic material. J. Mater. Engineering and Performance, Vol. 21, No. 6, pp. 1046—1050. doi: https://doi.org/10.1007/s11665-011-9950-z

23. Salehi, Z., Zinatloo-Ajabshir, S., Salavati-Niasari, M. (2016). New simple route to prepare Dy2Ce2O7 nanostructures: Structural and photocatalytic studies. J. Molecular Liquids, Vol. 222, pp. 218—224.doi:  https://doi.org/10.1016/j.molliq.2016.07.026

24. Cao, X., Vassen, R., Fischer, W., Tietz, F., Jungen, W., Stover, D. (2003). Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv. Mater., Vol. 15, No. 7, pp. 1438—1442. doi: https://doi.org/10.1002/adma.200304132