Conferences

Low-temperature phase stability of ceramics in the ZrO2—Y2O3—СеO2 system produced after heat treatment of the starting powders at 850 °C

  
V. A. Vynar 2,
   

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Mega_marekira@ukr.net

Usp. materialozn. 2023, 7:50-60
https://doi.org/10.15407/materials2023.07.005

Abstract

The low-temperature phase stability of materials in the ZrO2—Y2O3—CeO2 system with compositions, % (mol.): 97ZrO2—3Y2O3; 95ZrO2—3Y2O3—2СеО2; 92,5ZrO2— 2,5Y2O3—5СеО2; 90ZrO2—2Y2O3—8СеО2; 88ZrO2—12СеО2 was studied. Treatment of materials in hydrothermal conditions under an increased holding time (14 hours) was used. The starting powders were produced by the hydrothermal synthesis in an alkaline medium and heat-treated at 850 °C. The samples were sintered at 1350 oC. The materials properties were investigated by the X-ray phase analysis and electron microscopy. The aging stability of ceramics was determined by the degree of phase transformation T-ZrO2 → M-ZrO2 under experimental conditions. Porous microstructures were formed in the samples, which differ in the size distribution of both grains and pores. A characteristic feature is the presence of various amounts of fine-grained fragments with a regular microstructure and the formation of both rounded and elongated grains.The phase transformation T-ZrO2 → M-ZrO2 leads to an increase of the samples porosity. This, in turn, contributes to the intensification of the ceramics aging. After 14 h the phase transformation T-ZrO2 → M-ZrO2 was found in four samples. In the sample 97ZrO2—3Y2O3, 46% of M-ZrO2 was formed; in the 95ZrO2— 3Y2O3—2CeO2 sample, 48% of M-ZrO2 was formed; in the 92,5ZrO2—2,5Y2O3—5CeO2 sample, 39% of M-ZrO2 was formed. In the 90ZrO2—2Y2O3–8CeO2 sample ≈1% of M-ZrO2 appeared, and in the 88ZrO2—12CeO2 sample M-ZrO2 was not identified. Formation features of the solid solution during the doping of zirconia with yttrium oxide and cerium oxide, the amount of cerium oxide in a ZrO2-based solid solution, the phase transformation F-ZrO2 → T-ZrO2 during the sintering and the formation of a homogeneous microstructure contribute to increasing the low-temperature phase stability of samples both 90ZrO2—2Y2O3—8СеО2 and 88ZrO2—12СеО2 composition. During the microstructural design of ceramics in the ZrO2—Y2O3—СеО2 system with increased low-temperature phase stability, it is necessary to establish such a ratio of Y2O3 and СеО2 in the solid solution based on ZrO2 that would provide the necessary strength behavior according to the ceramics use. 


Download full text

ZRO2—Y2O3—CEO2 SYSTEM, AGING, LOW-TEMPERATURE PHASE STABILITY, M-ZRO2 PHASE, ZRO2 SOLID SOLUTION

References

1. Hannink, H. J. (2000). Transformation toughening in zirconia-containing ceramics. Amer. Ceram. Soc., Vol. 83 (3), pp. 461—487. doi: https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

2. Gremillard, L., Martin, L., Zych, L., Crosnier, E., Chevalier, J., Charbouillot, A., Sainsot, P., Espinouse, J., Aurelle, J.-L. (2013). Combining ageing and wear to assess the durability of zirconia-based ceramic heads for total hip arthroplasty. Acta Biomaterialia, Vol. 9, pp. 7545—7555. doi: https://doi.org/10.1016/j.actbio.2013.03.030

3. Ramesh, S., Sara, Lee K. Y., Tan, C. Y. (2018). A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceram. Int., Vol. 44, is. 17, pp. 20620— 20634. doi: https://doi.org/10.1016/j.ceramint.2018.08.216

4. Deville, S., Gremillard, L., Chevalier, J., and Fantozzi, G. (2005). A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttriastabilized zirconia. J. Biomed. Mater. Res. B, Vol. 72, pp. 239—245. doi: https://doi.org/10.1002/jbm.b.30123

5. Harada, K., Shinya, A., Gomi, H., Hatano, Y., Shinya, A., and Raigrodski, A. J. (2016). Effect of accelerated aging on the fracture toughness of zirconias. J. Prosthet. Dent., Vol. 115, pp. 215—223. doi: https://doi.org/10.1016/j.prosdent.2015.08.020

6. Deville, S., Chevalier, J., Gremillard, L. (2006). Influence of surface finish an dresidual stresse sonthea ging sensitivity of biomedical grade zirconia. Biomaterials, Vol. 27, pp. 2186—2192. doi: https://doi.org/10.1016/j.biomaterials.2005.11.021

7. Youkang, Y., Jinyang, X., Min, J., Linfeng, L., Ming, Ch. (2023). Review article a critical review on sintering and mechanical processing of 3Y-TZP ceramics. Ceramics Int., Vol. 49, pp. 1549—1571. doi:  https://doi.org/10.1016/j.ceramint.2022.10.159

8. Conde, P. H., Prado, Ol., Dapieve, K. S., Bastos-Campos, T. M., Valandro, L. F., Marques de Melo, R. (2022). Effect of hydrothermal and mechanical aging on the fatigue performance of high-translucency zirconias. Dental Mater., Vol. 38, pp. 1060—1071. doi:  https://doi.org/10.1016/j.dental.2022.04.021

9. Marek, I. O., Ruban, O. K., Red'ko, V. P., Danylenko, M. I., Korniy, S. A., Dudnik, O. V. (2019). Physicochemical properties of nanocrystalline powders of the ZrO2— Y2O3—CeO2 system obtained by the hydrothermal method. Poroshkova metalurgiya, No. 3/4, pp. 3—12 [in Ukrainian].

10. Marek, I. O., Dudnik, O. V., Korniy, S. A., Red’ko, V. P., Danylenko, M. I., Ruban, O. K. (2021). Effect of heat treatment in the range of 400—1300 °C on the properties of nanocrystalline powders of the ZrO2—Y2O3—CeO2 system. Poroshkova metalurgiya, No. 7/8, pp. 3—15 [in Ukrainian].

11. Chevalier, J., Gremillard, L., Deville, S. (2007). Low-temperature degradation of zirconia and implications for biomedical implants. Annu. Rev. Mater. Res., Vol. 37, pp. 1—32. doi:10.1146/annurev.matsci.37.052506.084250

12. Zavodinsky, V. G. (2005). Investigation of the phase stability mechanism of zirconium dioxide doped with magnesium and calcium. Perspektivnye materialy, No. 2, pp. 5—9 [in Russian].

13. Ping, L., I-Wei, Ch., James, P.-H.E. (1994). Effect of dopants on zirconia stabilization — an X-ray absorption study: I. Trivalent dopants. J. Amer. Ceram. Soc., Vol. 77, No. 1, pp. 118—128.

14. Ping, L., I-Wei, Ch., James, P.-H. E. (1994). Effect of dopants on zirconia stabilization — an X-ray absorption study: II. Tetravalent dopants. J. Amer. Ceram. Soc., Vol. 77, No. 5, pp. 1281—1288.

15. Jiang, Sh., Huang, X., He, Zh., Buyers, A. (2018). Phase transformation and lattice parame-ter changes of non-trivalent rare earth-doped YSZ as a function of temperature. JME-PEG, Vol. 27, pp. 2263—2270. doi: https://doi.org/10.1007/s11665-018-3159-3

16. Shannon, R. D. (1976). Revised effective ionic-radii and systematic studies of interatomic dis-tances in halides and chalcogenides. Acta Crystallogr., Vol. A32, pp. 751—767. doi: https://doi.org/10.1107/ S0567739476001551

17. Manicone, P. F., Lommetti, P. R., Raffaelli, L. (2007). An overview of zirconia ceramics: Basic properties and clinical applications. J. Dentistry, Vol. 35, pp. 819— 826.  doi: https://doi.org/10.1016/j.jdent. 2007.07.008