Conferences

Durometric analysis of hardening of the near-surface layer of ADI during friction at the influence of the TRIP effect

       

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
yupodrezov@ukr.net
Usp. materialozn. 2023, 7:37-49
https://doi.org/10.15407/materials2023.07.004

Abstract

Features of strengthening of the near-surface layer of ADI during friction due to strain–induced martensitic transformation were analyzed by duromeric methods. Indentation under continuous loading (Meyer hardness, НM) and Vickers microhardness Нμ were used. Pop–ins are observed on the ADI continuous load curves, which indicate martensitic transformations during indentation. The effect usually exists at a load of ~0,1 Н and an depth of ~1,5 μk. The average microhardness of the initial sample is Нμ ≈ 4,89 GРa. After wear, the average value increases to Нμ ≈ 6,92 GРa. Statistical analysis of the microhardness distribution of the sample after wear revealed that a third of the indentations have abnormally high hardness, which is characteristic of deformation-induced martensite. Probably, these indents are obtained from regions of the structure where deformation-induced martensitic transformation took place. Increasing the indentation load practically does not affect the determination of the microhardness of the initial sample, but reduces the hardness of the sample after wear. This indicates the gradient nature of deformation and phase-structural rearrangements in the near-surface layer during wear. As the friction temperature increases, there is a decrease in microhardness in the wear zone. This is explained by the departure from the temperature range of the martensitic transformation, due to which the TRIP effect is weakened. The maximum degradation of microhardness is observed between room temperature and 50 oC.

 


Download full text

ADI MATERIALS, DUROMETRIC STUDIES, TRIP-EFFECT, WEAR

References

1. Gogaev, K. O., Podrezov, Yu. M., Voloshchenko, S. M. (2018). New areas of use of high-strength cast iron. Nauka pro materialy: dosyagnennya ta perspektivy, Vol. 1, K.: Akademper., 652 p. [in Ukrainian].

2. Gogaev, K., Podrezov, Yu., Voloshchenko, S., Askerov, M., Minakov, N., Lugovskoy, Y. (2020). Analysis of strain hardening of ADI at isothermal hardening temperatures. Visnyk Natsionalnogo tehnichnogo universitetu “KhPI”. Series: Novi rishennya v suchasnyh tehnologiyah, Kharkiv: NTU “KhPI”, No. 1 (3), pp. 3—8 [in Ukrainian]. doi: https://doi.org/10.20998/2413-4295.2020.03.01

3. Voloshchenko, S. M. (2006). Bainite high-strength cast iron for tillage machinery. Agroperspektiva, Vol. 7, pp. 50—51 [in Ukrainian].

4. Kovalev, A., Wendler, M., Jahn, A., Weib, A., Biermann, H. (2013). Thermodynamicmechanical modeling of strain-induced α0-martensite formation in austenitic Cr—Mn—Ni As-cast steel: thermodynamic-mechanical modeling of straininduced α0-martensite formation. Adv. Eng. Mater., Vol. 15, pp. 609—617.

5. Adel Nofal (2013). Advances in the metallurgy and applications of ADI. J. Metallurgical Engineering (ME), Vol. 2, is. 1, pp. 1—18.

6. Li, X. H., Saal, P., Gan, W. M., Hoelzel, M., Volk, W., Petry, W., Hofman M. (2018). Strain-induced martensitic transformation kinetic in austempered ductile iron (ADI). Metallurgical mater. transactions, Vol. 49A, Jan, pp. 94—104. doi: https://doi.org/10.1007/s11661-017-4420-3.

7. Gogaev, K. O., Podrezov, Yu. M., Voloshchenko, S. M., Askerov, M. G., Mіnakov, M. V. (2021). The effect of Mn content on the phase composition and mechanical properties of bainite cast iron (ADI). Metaloznavstvo ta obrobka metaliv, Vol. 27 (100), pp. 3—15 [in Ukrainian]. doi: https://doi.org/10.15407/mom2021.04.003

8. Voloshchenko, S. M., Gogaev, K. O., Podrezov, Yu. M., Mіnakov, M. V. (2020). Effect of isothermal quenching temperature on ADI strain hardening. Metaloznavstvo ta obrobka metaliv, Vol. 1, pp.15—22 [in Ukrainian].

9. Ahn, Т.-H., Oh, C.-S., Kim, D. H., Oh, K. H., Bei, H., Georgec, E. P., Hana, H. N. (2010). Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scripta Mater., Vol. 63, pp. 540—543. www.elsevier.com/locate/scriptamat

10. Gogaev, K. O., Podrezov, Yu. M., Voloshchenko, S. M., Grinkevich, К. E., Tkachenko, I. V., Kovalenko, M. V. (2017). Influence of temperature and loading conditions on wear characteristics of bainitic cast iron. Problemy tertya ta znoshuvannya, Vol. 3, pp. 18—24 [in Ukrainian].

11. Lugovskoi, Yu. F. (1987). Methods of fatigue testing of composite materials during bending obtained by electron-beam evaporation. Problemy spets. metallurgii, Vol. 4, pp. 61—65 [in Russian].

12. Milman, Y. N., Galanov, O. N., Chugunova, S. I., Goncharova, I. V. (1996). Determining the mechanical properties of low-plastic materials by the indentation method. Ceramics 50, Polish Ceramic Bulletin 12, Krakow: izd-vo Pol’skoy Academii nauk, pp. 95—102 [in Russian].

13. Minghoi, Cai, Zyun, Li, Qi, Chao, Peter, D. Hodson. (2014). A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metallurgical and Materials Uransactions A, Vol. 45A, pp. 5624—5634.

14. Hyoung, Seok Park, Jong, ChanHan, Nam, Suk Lim, Chan, Gyung Park. (2015). Nano-scale observation on the transformation behavior and mechanical stability of individual retained austenite in CmnSiAl TRIP steels. Mater. Sci. Engineering A, Vol. 627, pp. 262—269. doi: https://doi.org/10.1016/j.scriptamat.2010.05.024

15. Landesberger, M., Koos, R., Hofmann, M., Li, X., Boll, T., Petry, W., Volk, W. (2020). Phase transition kinetics in austempered ductile iron (ADI) with regard to Mo content. Materials, Vol. 13, pp. 52—66. doi: https://doi.org/10.3390/ma13225266

16. Rosenberg, O. A., Novikov, N. V., Sheykin, S. E., Firstov, S. A., Podrezov, Yu. N., Danylenko, N. V. (2004). Formation of gradient nanostructure on the surface of parts by the method of plastic deformation. Metallophis. noveyshie tehnologii, Vol. 26, No. 11, pp. 1493—1500 [in Russian].

17. Titanium in medical friction pairs: Monograph. (2019). Kyiv: INM named after V. M. Bakulya NAN Ukrainy / Ed. Dyomina, V. Yu., Sheykina, S. E. K.: Logos, 140 p. [in Ukrainian].

18. Hong, Chul Shin, Tae, Kwon Ha, Young, Won Chang. (2001). Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scripta Mater., Vol. 45, pp. 823—829.

19. Handayani, D., Voigt, R. C., Hayrynen, K. (2018). Understanding the machinability of austempered ductile iron (ADI). Mater. Sci. Forum, Vol. 925, pp. 311—317. doi: https://doi.org/10.4028/www.scientific.net/MSF.925.311