Conferences

Statistical method for determining shear stress field parameters in glide plane in multicomponent alloy

   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
nil2903@gmail.com
Usp. materialozn. 2023, 7:3-18
https://doi.org/10.15407/materials2023.07.001

Abstract

A method has been developed in which atomic sizes misfit and elastic modulus misfit at crystal lattice nodes are considered as discrete random variables and the definition of their dispersion allows to obtain analytical expressions for standard deviations and correlation lengths of the short- and long-wave components of stochastic shear stress field created by solute atoms in the glide plane in a multicomponent alloy. This makes it possible to significantly reduce the amount of calculations when determining the shear stress field parameters. The developed method was applied to calculate these parameters for the CrCoNiFeMn alloy. The calculated parameters were well correlated with similar parameters determined from the analysis of shear stress distributions in the glide plane, which were calculated by the method of direct summation of solute atoms contributions. In addition, it was found that there are separate effective crystal lattice distortions for the short- and long-wave components that differ from the average distortion that was proposed earlier. This results from the fact that these components are determined by solute atoms with different distance from the glide plane. Effective distortion is greater, the greater this distance from the glide plane. In addition, there is no single empirical constant for all alloy to determine the yield strength as a function of their shear modulus and average distortion. But the proposed method makes it possible to determine the main parameters of the shear stress field in a specific multicomponent alloy. These parameters can be used to calculate the yield strength of this alloy.


Download full text

GLIDE PLANE., MULTICOMPONENT ALLOY, SHEAR STRESSES, SOLID SOLUTION

References

1. Miracle, D. B. & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater., Vol. 122, pp. 448—511. doi:  https://doi.org/10.1016/j.actamat.2016.08.081

2. Fleischer, R. L. (1963). Substitutional solution hardening. Acta Metallurgica, Vol. 11, pp. 203—209. doi:  https://doi.org/10.1016/0001-6160(63)90213-X

3. Labusch, R. (1970). A statistical theory of solid solution hardening. Phys. Stat. Sol., Vol. 41, pp. 659—669. doi: https://doi.org/10.1002/pssb.19700410221

4. Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. (2017). Solute strengthening in random alloys. Acta Mater., Vol. 124, pp. 660—683. doi: https://doi.org/10.1016/j.actamat.2016.09.046

5. Toda-Caraballo, I. (2017). A general formulation for solid solution hardening effect in multicomponent alloys. Scripta Mater., Vol. 127, pp. 113—117. doi: https://doi.org/10.1016/j.scriptamat.2016.09.009

6. Podolskiy, A. V., Tabachnikova, E. D., Voloschuk, V. V., Gorban, V. F., Krapivka, N. A., & Firstov, S. A. (2018). Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high entropy alloy at temperatures 4.2—350 K. Mater. Sci. Engineering: A, Vol. 710, pp. 136—141. doi: https://doi.org/10.1016/j.msea.2017.10.073

7. Firstov, S. O., Rogul, T. G., Krapivka, N. A., & Chugunova, S. I. (2018). Thermoactivation analysis of temperature dependence of a flow stress in solid solutions with a B.C.C. lattice. Metallofiz. Noveishie Tekhnologii, Vol. 40, pp. 219—234 [in Russian]. doi: https://doi.org/10.15407/mfint.40.02.0219

8. Firstov, S. O. & Rogul, T. G. (2017). Thermoactivation analysis of the flow-stress– temperature dependence in the F.C.C. solid solutions. Metallofiz. Noveishie Tekhnologii, Vol. 39, pp. 33—48 [in Russian]. doi: https://doi.org/10.15407/mfint.39.01.0033

9. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2021). Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical approach. Progress in Natural Science: Mater. Int., Vol. 31, pp. 95—104. doi:  https://doi.org/10.1016/j.pnsc.2020.11.006

10. Lugovy, M. I., Slyunyayev, V. N., Brodnikovskyy, M. P. & Firstov, S. O. (2017). Calculation of solid solution strengthening in multicomponent high temperature alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 23, pp. 3—9 [in Ukrainian].

11. Lugovy, M. I., Slyunyayev, V. N. & Brodnikovskyy, M. P. (2019). Additivity principle for thermal and athermal components of solid solution strengthening in multicomponent alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 25, pp. 26—34 [in Russian].

12. Lugovy, M. I., Verbylo, D. G. & Brodnikovskyy, M. P. (2021). Shape of dislocation line in stochastic shear stress field. Uspihy materialoznavstva, Kyiv: ІPМ NАN Ukrainy, Vyp. 2, pp. 19—34 [in Ukrainian].  doi: https://doi.org/10.15407/materials2021.02.019

13. Lugovy, M. I., Verbylo, D. G. & Brodnikovskyy, M. P. (2021). Modelling of shear stress field in glide plane in substitutional solid solutions. Uspihy materialoznavstva, Kyiv: ІPМ NАN Ukrainy, Vyp. 3, pp. 24—37 [in Ukrainian]. doi: https://doi.org/10.15407/materials2021.03.024

14. Lugovy, M. I., Verbylo, D. G. & Brodnikovskyy, M. P. (2022). Two components of shear stress field in glide plane in multicomponent alloys. Uspihy materialoznavstva, Kyiv: ІPМ NАN Ukrainy, No. 4/5, pp. 12—24 [in Ukrainian].doi: https://doi.org/10.15407/materials2022.04-05.012

15. Lugovy, M. I., Verbylo, D. G. & Brodnikovskyy, M. P. (2022). Evolution of dislocation line shape in multicomponent alloys under loading. Uspihy materialoznavstva, Kyiv: ІPМ NАN Ukrainy, No. 4/5, pp. 36—50 [in Ukrainian]. doi: https://doi.org/10.15407/materials2022.04-05.036

16. Lugovy, M. I., Verbylo, D. G. & Brodnikovskyy, M. P. (2023). Temperature dependence of yield strength in terms of two components of stochastic shear stress field in glide plane in CrCoNiFeMn alloy. Uspihy materialoznavstva, Kyiv: ІPМ NАN Ukrainy, No. 6, pp. 15—31 [in Ukrainian]. doi: https://doi.org/10.15407/materials2023.06.015