Conferences

Thermodynamic properties of melts of the Bi—Cu—Eu system

V. A. Shevchuk 1,
 
Kudin V.G 2,
    

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 Taras Shevchenko National University of Kyiv, Kyiv
sud.materials@ukr.net

Usp. materialozn. 2023, 6:99-114
https://doi.org/10.15407/materials2023.06.099

Abstract

The partial and integral enthalpies of mixing of the melts of the BiCuEu system were determined for the first time by the method of calorimetry on three radial sections with a constant ratio of two components: xCu/xEu = 0,3/0,7, xEu/xBi = 0,23/0,77, xEu/xBi = = 0,8/0,2 at T = 1400 ± 1 K. It is shown that the partial and integral enthalpies of mixing of the studied melts are mainly exothermic. Moreover, when adding bismuth to CuхEu1-х melt, the thermal effect of dissolution of the latter increases. This is due to the formation of strong bonds between Bi and Eu. In the other two sections, the opposite happens. Using the literature enthalpies of mixing of melts of the CuEu system, investigated by the method of calorimetry at 13131480 K in the entire range of compositions, Gibbs energies, enthalpies and entropies of the formation of melts and intermetallics, their temperature-concentration dependences, and from them the liquidus curve of the state diagram were calculated of the studied system according to the model of the ideal associated solution. It is shown that the activities of the components in these melts exhibit small negative deviations from ideal solutions and a small amount of associates, especially Eu5Cu, is formed in them. The maximum mole fraction of the EuCu associate reaches a value of 0,09, and the other two (Eu2Cu, EuCu5) 0,05 and 0,02. From the critically analyzed thermodynamic properties of melts of the CuEu, BiCu and BiEu systems, their reliable data were derived, from which similar parameters for liquid alloys of the ternary system BiCuEu were calculated according to various known models. It is shown that the experimental mixing enthalpies of melts of the BiCuEu system best agree with those calculated according  to   the RedlichKisterMujianu  model.  It  was established that ΔHmin = = −61,5 kJ/mol at xBi = 0,5. According to the same model, DG, DS of these melts were calculated. It was established that DGmin = –40 kJ/mol, and DSmin = –18 J/mol·K, the minima of which also fall on the boundary subsystem BiEu, i.e., the main contribution to the interaction energy between different-named atoms of melts of the BiCuEu system contribute to the components of this subsystem.

 


Download full text

CALORIMETRY, INTERMETALLID, MELTS, MODEL OF IDEAL ASSOCIATED SOLUTIONS, STATE DIAGRAM, SYSTEMS BI—CU—EU, CU—EU, THERMODYNAMIC PROPERTIES

References

  1. Liu, K., Chien, C. L., Searson, P. C. (1998). Finite-size effects in bismuth nanowires . Phys. Rev. Vol. 58, pp. 14 681—14 700. doi: https://doi.org/10.1103/PhysRevB.58.R14681
  2. Lu, M., Zieve, R. J., Van, Huslt A., Jaeger, H. M., Resenbaum, T. F., Radelaar, S. Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys. Rev. B, Vol. 53, pp. 1609—1623. doi: https://doi.org/10.1103/PhysRevB.53.1609
  3. Shevchenko, M. O., Ivanov, M. I., Berezutski, V. V., Sudavtsova, V. S. (2015). Thermodynamic properties of alloys in the binary Ca—Ge system. J. Phase Equilib. Diff., Vol. 36, No. 6, pp. 554—572. doi: 10.1007/s11669-015-0408-0
  4. Dinsdale, A. T. (1991). SGTE data for pure elements. CALPHAD, Vol. 15, No. 4.  pp. 319—427. doi: https://doi.org/10.1016/0364-5916(91)90030-N
  5. Bonnier, E., Caboz, R. (1960). Sur l'estimation de l'enthalpie libre de mélange de certains alliages métalliques liquides ternaires. Comp.  Rendus Académie Sci., Paris, Vol. 250, No. 3, pp. 527—529.
  6. Toop, G. W. (1965). Predicting ternary activities using binary data. Transactions of the Metallurgical Soc. of AIME, Vol. 233, p. 850.
  7. Kohler, F., Findenegg, G. H. (1965). Zur Berechnung der thermodynamischen daten eines ternären systems aus den zugehörigen binären systemen. Monatshefte für Chemie, Vol. 96, is. 4, pp. 1228—1251. doi: 10.1007/BF00904272.
  8. Muggianu, Y. M., Gambino, M., Bros, J. P. (1975). Enthalpies of formation of liquid bismuth–gallium–tin alloys at 723 K. Choice of an analytical representation of integral and partial thermodynamic functions of mixing. J. de Chimie Physique et de Physico-Chimie Biologique, Vol. 72, pp. 83—88. doi: https://doi.org/10.1051/jcp/1975720083
  9. Redlich, O., Kister, A. (1948). Algebraic representation of thermodynamic properties  and  the  classification  of  solutions. Int. Eng. Chem., Vol. 40, No. 2, pp. 345—348. doi: https://doi.org/10.1021/ie50458a036
  10. Sudavtsova, V. S., Shevchenko, M. O.,  Ivanov, M. I., Kudin, V. G. (2021). Thermodynamic properties of alloys of double and ternary systems formed by aluminum, transition and rare earth metals. Kiyiv: Nauk. dumka, 200 p. [in Ukrainian].  ISBN 978-966-00-1772-6
  11. Sudavtsova, V. S.,  Shevchuk, V. A.,  Kudin, V. G., Podoprygora, H. V., Ivanov, M. I. (2021). Thermodynamic properties of melts of the Bi—Eu system. Uspihi materialoznavstva, No. 3, pp. 90—99  [in Ukrainian].  doi: https://doi.org/10.15407/materials2021.02.090
  12. Usenko, N. I., Ivanov, M. I., Petiuh, V. M., Witusiewicz, V. T. (1993). Thermochemistry of binary liquid alloys of copper with barium and lanthanide metals (europium, dysprosium and ytterbium). J. Alloys Comp.,  Vol. 190, No. 1, pp. 149—155. doi: https://doi.org/10.1016/0925-8388(93)90391-Y
  13. Ivanov, M., Usenko, N., Kotova, N. (2020). Enthalpies of mixing in binary Cu—Eu and ternary Al—Cu—Eu liquid alloys. Int. J. Mat. Res., Vol. 111 (4), pp. 273—282. doi: https://doi.org/10.3139/146.111895
  14. Zhang L.  G., Liu, L. B., Liu, H. S., Jin, Z. P.  (2007). Thermodynamic assessment of Cu—Eu and Cu—Yb system. Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 3, pp. 264—268. doi: https://doi.org/10.1016/j.calphad.2006.11.003
  15. Golovata, N., Kotova, N., Usenko, N. I. (2020). Modelling  thermodynamic properties of binary Cu—Eu and ternary Al—Cu—Eu melts. French-ukrainian  J. of Chem., Vol. 08, is. 02, pp. 73—82. doi: https://doi.org/10.17721/fujcV8I2P73-82
  16. Prigozhin, I., Defey, R. (1966). Chemical thermodynamics. Novosibirsk: Nauka, Sibirskoe otdelenie. 510 p. [in Russian].
  17. Shevchenko, M. O., Kudin, V. G., Sudavtsova, V. S. (2012). Correctness of thermodynamic properties of binary alloys calculated according to the model of ideal associated solutions.  Sovremennyie problemyi fizicheskogo materialovedeniya. Vyip. 21. S. 67—77. [in Russian].
  18. Shevchenko, M. O., Berezutski, V. V., Ivanov, M. I., Kudin, V. G., Sudavtsova, V. S. (2015). Thermodynamic properties of alloys of the binary Al—Sm, Sm—Sn and ternary Al—Sm—Sn systems. J. Phase Equil. Diff.,  Vol. 36, No. 1, pp. 39—52. doi: 10.1007/s11669-014-0353-3
  19. Sudavtsova, V. S., Shevchenko, M. O. Ivanov, M. I., Berezutski, V. V., Kudin, V. G. (2017). Thermodynamic properties of liquid alloys of copper with lanthanum.Vol. 91, No. 6, pp. 937—944. [in Russian]. doi: 10.7868/S0044453717060279
  20. Shevchenko, M. O., Ivanov, M. I., Berezutski, V. V., Sudavtsova, V. S.  (2015). Thermodynamic properties of alloys in the binary Ca—Ge system. J. Phase Equilib. Diff.,  Vol. 36, No. 6, pp. 554—572. doi: 10.1007/s11669-015-0408-0
  21. Teppo, O.,  Niemelä, J., Taskin,  P. (1990). An assessment of the thermodynamic properties  and  phase  diagram  of  the  system  Bi—Cu. Thermochimicu Acta, Vol. 173, pp. 137—150. doi: https://doi.org/10.1016/0040-6031(90)80598-S
  22. Masalsky, T. B. (ed). (1990). Binary Alloy Phase Diagrams 2nd edn (Metals Park, OH: ASM International).
  23.  Abdusalyamova, M. N., Vasilyeva, I. G. (2011). Phase equilibrium and intermediatesphases  in  the  Eu—Sb  system.    J. Solid  State Chem., Vol. 184,  pp. 2751—2755. doi: https://doi.org/10.1016/j.jssc.2011.08.018