Conferences

Creep of low-plastic heat-resistant materials in bending

      

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
yupodrezov@ukr.net
Usp. materialozn. 2023, 6:58-74
https://doi.org/10.15407/materials2023.06.058

Abstract

Express method of testing the initial creep stagiess of low-plastic heat-resistant materials that work in extreme conditions using the bending scheme proposed and developed. The features of stress and deformation calculation are analyzed. The limitations of using the elastic approximation are outlined: the degree of plastic deformation of the sample should not exceed 1—1,5%. The deflection should not exceed 10% of the distance between the supports, the height should not be greater than 1/10 of the distance between the supports. Under these conditions, the first and second stages are well distinguished on the creep curves. This makes it possible to analyze the influence of phase and structural changes on the mechanisms of creep at each stage, and the conditions for the transition to stationary creep. The results of model experiments performed on TNM titanium aluminide alloys and Fe3Al powder alloy samples indicate the expediency of using the three-point bending scheme for researching the initial stagiess of creep of heat-resistant materials. Experimentally determined values of the deformation rate vary in the range έ ~ 10-5—10-8, which is the most characteristic for the creep of heat-resistant materials. For low-plastic intermetallics, the influence of temperature and loading force on creep curves was studied. The dependences deformation rate vs time on the first and second stages  of creep were obtained from bending tests. Thermal activation parameters are defined for the stage of permanent creep.  The proposed method allows to study the speed sensitivity and to determine the thermal activation parameters of creep. In extreme conditions of operation of low-plastic heat-resistant materials, the proposed method allows to take into account and analyze the contribution to the creep of cracking and slow destruction processes.


Download full text

INITIAL STAGES OF CREEP, HEAT RESISTANT MATERIALS, STRAIN RATE, THERMAL ACTIVATION PARAMETERS, THREE-POINT BENDING TEST

References

1.   Jalali, S. I. A., Kumap, P., Jayaram, V. (2019). Creep of Metallic Materials in Bending. The Minerals, Metals & Mater. Soc., Vol. 71 (10). doi: 10.1007/s11837-019-03707-1

2.   ASTM C1576-05(2017). Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Ambient Temperature, 13 p.doi: https://www.astm.org/c1576-05r17.html

3.   ASTM C1161–18 (2018). Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, 19 p. doi: https://www.astm.org/c1161-13.html

4.   Hollenberg, G. W., Terwilliger, G. R., Gordon, R. S. (1971). Calculation of stresses and strains in four-point bending creep tests. J. Amer. Ceramic Soc., Vol. 54 (4), pp. 196—199. doi: https://doi.org/10.1111/j.1151-2916.1971.tb12263.x

5.   Rosenfield, A. R., Duckworth, W. H., Shetty, D. K. (1985). Damage analysis of creep in bending. J. Amer. Ceramic Soc., Vol. 68 (9), pp. 483—485.

6.   ISO 899-2:2003. Plastics. (2018). Determination of creep behaviour. Part 2. Flexural creep by three-point loading, 14 p. doi: https://www.iso.org/standard/31263.html

7.   Podrezov, Yu. M., Verbylo, D G. Danylenko, V. I., Romanko, P. M., Shurygin, B. V. (2018). Express method of research of high-temperature properties of titanium alloys. Elektronnaya  mikroskopiya i prochnost materialov, Vol. 24, pp. 57—74 [in Ukrainian]. http://www.materials.kiev.ua/article/2667 

8.    Appel, F., Paul, J. D. H., Oehring, M. (2009). Phase transformations during creep of a multiphase TiAl-based alloy with a modulated microstructure. Mater. Sci. Engineering A, pp. 342—349. doi: https://doi.org/10.1016/j.msea.2008.08.047

9.    Appel, F., Paul, J. D. H., Oehring, M. (2011). Gamma Titanium Aluminide Alloys: Science  and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 745 p. doi: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527636204

10.   Kocks, U. F., Mecking, H. (2003). Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci,, Vol. 48 (3), pp. 171—274. doi:10.1016/S0079-6425(02)00003-8

11.   Remez, M. B., Podrezov, Yu. M., Bondar, A. A, Tsyganenko, N. I., Bilous, O. O., Petyuh, V. M. (2020). Structure and properties of TiAl-based alloys doped  with 2% (at.) Mo. Poroshkova metalurgiya, No. 7/8, pp. 123—138 [in Ukrainian]. http://www.materials.kiev.ua/article/3112 

12.  Remez, M. B., Podrezov, Yu. M., Danylenko, V. I., Danylenko, M. I., Firstov, S. O. (2020). Brittle plastic transition in titanium aluminides doped with β-stabilizers. Uspihy materialoznavstva, Vyp. 1, pp. 86—97 [in Ukrainian]. doi: https://doi.org/10.15407/materials2020.01.086

13.   Tolochyn, A. I., Tolochyna, A. V., Baglyuk, G. A., Evich, Ya. I., Podrezov, Yu. N., Mamonova, A. A. (2020). Influence of the sintering temperature on the formatting of the structure and properties of powdered iron aluminide  Fe3Al.  Poroshkova  metalurgiya, No. 3/4, pp. 42—54 [in Russian]. http://www.materials.kiev.ua/article/3048 

14.   Qiang, Zhu, Gang, Chen, Chuanjie, Wang, Heyong, Qin, Peng, Zhang (2019). Tensile Deformation and Fracture Bhaviors of a Nickel-Based Superalloy via In Situ Digital Image Correlation and Synchrotron Radiation X-ray Tomography. Materials., Vol. 12 (15), pp.  2461. doi: https://doi.org/10.3390/ma12152461

15.   Morris, D. G., Gutierrez-Urrutia, I., Mun˜oz-Morris, M. A. (2008). High temperature creep behaviour of an FeAl intermetallic strengthened by nanoscale oxide particles. Int. J. of Plasticity, Vol. 24 (7), pp. 1205—1223. doi: https://doi.org/10.1016/j.ijplas.2007.09.001

16.   Palm, M., Krein, R., Milenkovic, S., Sauthoff, G., Risanti, D., Stallybrass, C., Schneider, A. (2007). Strengthening mechanisms for Fe—Al—based alloys with increased  creep  resistance at high temperatures. Mater. Res. Soc. Symp. Proc., Vol. 980, pp. 3—14. doi: https://doi.org/10.1557/PROC-980-0980-II01-03