Conferences

Anelasticity and damping capacity of magnesium and Mg—Al alloys under conditions of cyclic high-amplitude loading

     

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
yupodrezov@ukr.net
Usp. materialozn. 2023, 6:41-57
https://doi.org/10.15407/materials2023.06.041

Abstract

For Mg—Al  alloys with magnesium content from 0 to 9%, measurements of anelastic deformation, damping capacity, and twinning start stresses were carried out. The method of cyclic loading under tension for a wide range of  oscillations amplitudes with precision fixation of displacement was used. A method for determination  of the start twinning deformation  point σ0,002tw under conditions of cyclic loading is proposed, This stress characterizes the beginning of the inverse twinning stage, when the anelastic strain is 2·10-5. Characteristics of σ0,002tw for technical magnesium and its alloys with aluminum in a wide range of plastic deformation are determined. An insignificant linear increase of σ0,002tw  with increasing deformation was established for all Mg—Al alloys. The start twinning deformation point increases with increasing aluminum concentration. For low-alloy alloys with a solid-solution strengthening mechanism, the stress at the beginning of twinning increases insignificantly. For highly alloyed alloys, a significant increase of σ0,002tw stress is observed. It is established that repeated loading within the hysteresis loop to stresses. which is less than the maximum and is not accompanied by additional plastic deformation. If the level of applied stresses during repeated loading reaches the maximum value, the amount of plastic deformation after unloading increases. The addition in εpl gradually decreases with  the rise  of cycles number. The dependences of inelastic deformation and dissipated energy on the previous deformation degree for all investigated magnesium alloys demonstrate an extreme character. The growth of these characteristics is observed only in the initial part of the load  to  the  residual  deformation of 1—2%. With a further increase in deformation, the tendency to anelasticity and the damping capacity decrease. For the dependences dissipatson energy vs amplitude of loob stress, the maximum of dissipation energy is observed under the condition when the stress reaches a critical value, which corresponds to the beginning of prismatic or pyramidal sliding.

 


Download full text

DAMPING CAPABILITY, DISSIPATION ENERGY, ELASTICITY, HYSTERESIS LOOPS, MG—AL ALLOYS, QUASI-STATIC CYCLIC LOADING, TWINNING START POINT, АNELASTICITY

References

  1. Zener, C. (1948). Elasticity and anelasticity metals. University of Chicago, Illinois. 170 p.
  2. Nowik, A. S., Berry, B. S. (1972). Anelastic relaxation in crystalline solids. Academic Press, New York. 677 p.
  3. Golovin, I. S. (2012). Internal friction and mechanical spectroscopy of metallic material. Mi.Sis., 247 p. [in Russian].
  4. Kondratiev, S. Yu., Yaroslavskiy, G. Ya., Chaykovskiy, B. S. (1986).  The issue of classification of high-damping metallic materials. Problemy prochnosti, No. 10, pp. 32—36 [in Russian]. doi: https://doi.org/10.1007/BF01523261
  5. Favstov, Yu., K., Shulga, Yu. N., Rahshtadt, A. G. (1980).  Metal science of high-damping alloys. Moscow: Metalurgiya, 272 p. [in Russian].
  6. Sigumoto,  K. (1975). High damping alloys. An overview of the main problems and applications. Nihon kindzoku gakkay kayho, Vol. 14, No. 7, pp. 491—498 [in Russian].
  7. Trojanova, Z., Palcek, P., Lukac, P., Chalupova, M. (2017). Internal fraction in magnesium alloys and magnesium — alloys — based composites. Magnesium alloys, pp 37—72. doi: 10.5772/67028.
  8. Trojanova, Z., Lukac, P., Dzugan, J., Halmesova, K. (2017). Amplitude dependent internal friction in a Mg—Al—Zn alloy. Metals, Vol. 7 (10), pp. 433. doi: https://doi.org/10.3390/met7100433
  9. Hutchinson, W. B., Barnett, M. R. (2010). Effective values of critical resolved shear stress  for  slip  in polycrystalline magnesium and other hcp metals. Scr. Matter., Vol. 63, pp. 737—740. doi: https://doi.org/10.1016/j.scriptamat.2010.05.047
  10. Stanford, N., Barnet, M. R. (2013). Solute strengthening of prismatic slip, basal slip and {1 0 1 2}  twinning  in  Mg  and  Mg—Zn binary alloys. Int. J. Plast, Vol. 47, pp. 165—181. doi: https://doi.org/10.1016/j.ijplas.2013.01.012
  11. Yujue, Cui, Yunping, Li, Shihai, Sun, HuaKang, Bian, Hua, Huang, Zhongchang, Wang, Yuichiro, Koizumi, Akihiko, Chiba. (2015). Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater., Vol. 101, pp. 8—11. doi: https://doi.org/10.1016/j.scriptamat.2015.01.002
  12. Tsai, M. H., Chen, M. S., Lin, L. H., Lin, M. H., Wu, C. Z., Ou, K. L., Yu, C. H. (2011). Effect of heat treatment on the microstructures and damping properties of biomedical Mg—Zr alloy. J. Alloys Comp., Vol. 509, pp. 813—819. doi: https://doi.org/10.1016/j.jallcom.2010.09.098
  13. Mihriban, O. Pekguleryuz, Karl, U. Kainer, Arslan, A. Kaya. (2013). Fundamentals of magnesium alloy metallurgy. Woodhead Publishing Limited, Cambridge. 368 p.
  14. Wang, Y. N., Huang, J. C. (2007). The role of twinning and untwinning in yielding behavior in hot-extruded Mg—Al—Zn alloy. Acta Mater., Vol. 55, pp. 897—905. doi: https://doi.org/10.1016/j.actamat.2006.09.010
  15. Watanabe, H., Sawada, T., Sasakura, Y., Ikeo, N., Mukai, T. (2014). Microyielding and damping capacity in magnesium. Scr. Mater., Vol. 87, pp. 1—4. doi: https://doi.org/10.1016/j.scriptamat.2014.06.004
  16. Davydenkov, N. N., Chuchman, T. N. (1957). Review of the modern theory of cold brittleness.  Research  on  heat-resistant  alloys. Moscow:  AN  SSSR,  Vol. 2,      pp. 9—34 [in Russian].
  17. Podrezov, Yu. M., Malka, O. M., Romanko, P. M., Valuyska, K. O. (2017). Temperature retention of pseudo-spring behavior in the cycle of prefabrication — depressurance of Mg and alloy Mg—9Al—0,2Ca—0,08Ti. Elektronnaya mikroskopiya i prochnost materialov, Vol. 23, pp. 53—65 [in Ukrainian].
  18. Peng, Chen. (2019). Twin — slip interaction in plastic deformation of magnesium. A dissertation  submitted  in  partial fulfillment of the requirements for the degree of October of Philosophy in Materials Science and Engineering. University of Nevada. Reno.
  19. Yunping, Li, Manabu, Enoki. (2008). Recovery behavior of pure magnesium in cyclic compression — quik unloading — recovery process at room temperature investigated by AE. Mater. Transactions, Vol. 49, No. 8, pp. 1800—1805. doi: https://doi.org/10.2320/matertrans.MC200705
  20. Nagarajan, D., Ren, X., Caceres, C. H. (2017). Anelastic behavior of Mg—Al and Mg—Zn solid solutions. Mater. Sci. Engineering A, Vol. 696, pp. 387—392. doi: https://doi.org/10.1016/j.msea.2017.04.069
  21. Vinogradov, A., Vasilev, E., Linderov, M., Merson, D. (2016). In situ observation of the kinetics of twinning – detwinning and dislocation slip in magnesium. Mater. Sci. Engineering A, Vol. 676, pp. 351—360. doi: https://doi.org/10.1016/j.msea.2016.09.004 [in Russian].
  22. Bonish, Mattias, Calin, Mariana, Van Humbeeck, Jan, Skrotzki, Werner, Eckert, Jurgen. (2015). Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti—Nb alloys. Mater. Sci. Engineering, Vol. C 48, pp. 511—520. doi: https://doi.org/10.1016/j.msec.2014.12.048
  23. Bashmakov, V. P. (2001). Plasticization and hardening of metal crystals during mechanical twinning. Minsk: UP.Tehnoprint 218 p. [in Russian].
  24. Li, Dayong, Wagoner, R. H.  (2021). The nature of yielding and anelasticity in metals. Acta Mater., Vol. 206, pp. 116625 doi: https://doi.org/10.1016/j.actamat.2021.116625
  25. Vladimirskiy, K. V. (1947). On twinning of calcite. ZhETF, Vol. 17, pp. 530—536 [in Russian].
  26. Tkachenko, V. G., Maksimchuk, I. N., Volosevich, P. Yu., Lashuk, N. K., Frizel, V. V. (2006). Creep resistance and long-term strength of structural magnesium alloys. High Temperature Materials and Processes, Vol. 25, No. 1—2, pp. 97—107.
  27. Remy, L. (1977). Twin — slip interaction in fcc crystals. Acta Met., Vol. 25 (6), pp. 711—714.doi:  https://doi.org/10.1016/0001-6160(77)90013-X
  28. Vasiliev, E. V. (2018). Kinetic features of the deformation mechanisms of magnesium alloys under static and cyclic loading. Dissert. c. ph-m science [in Russian].