Conferences

Effective plastic behavior of porous materials with an inverse opal structure

P. Korobko 1,
    

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kiev
kavipms326@gmail.com

Usp. materialozn. 2023, 6:32-40
https://doi.org/10.15407/materials2023.06.032

Abstract

Based on the theoretical principles of the mechanics of composites, the effective plastic behavior of a porous material with a periodic inverse opal structure under uniaxial loading was studied in detail by means of finite element modeling. The creation of such materials is based on the inversion of pores and skeleton of partially sintered dense packing of polystyrene spheres. Electrodeposited nickel was used as the skeleton of the porous material. According to the macroscopic uniaxial loading or unloading, was finding a stress-strain state at the meso-level. For this, equilibrium equations were solved at the meso-level using special boundary conditions for a periodic unit cell. Such boundary conditions relate the problem of equilibrium at the meso-level with the "effective" deformations of the composite. This made it possible to calculate macroscopic residual strains after a cycle of uniaxial loading and unloading and iteratively find the value of effective stress corresponding to residual strains of 0.2%. In this way, the yield strength of inverse opal for uniaxial loading is calculated. At the same time, as a result of finite-element calculations, the   transverse deformations coefficient (plastic Poisson ratio) is determined. This coefficient, in turn, makes it possible to approximate the general plastic behavior of the metamaterial by an elliptic yield curve in the plane of invariants of the stress tensor. Invariants mean average pressure and von Mises stress. These calculations were performing for several cases of the inverse opal structure, both with and without an additional coating. Yield stresses under any type of material loading are very sensitive to porosity. In particular, the application of an additional coating, even with a thickness less than  0,05  of  the  diameter of the spherical pores (initial polymer particles), causes an increase in the yield strength several times.

 


Download full text

INVERSE OPAL, METAMATERIALS, MICROMECHANICS, POROUS PLASTICITY MODEL, THEORY OF PLASTICITY

References

  1. Agranovich, V. M. & Gartstein, Yu. N. (2006). Spatial dispersion and negative refraction of light. Phys. Usp., Vol. 49, pp. 1029—1044 [in russian]. doi: 10.1070/PU2006v049n10ABEH006067
  2. Rosario, J. J., Berger, J. B., Lilleodden, E. T., McMeeking, R. M. & Schneider, G. A. (2016). The stiffness and strength of metamaterials based on the inverse opal architecture. Extreme Vechanics Lett., Vol. 12, pp. 86—96. doi: http://dx.doi.org/10.1016/j.eml.2016.07.006
  3. Pikul, J. H., Özerinç, S., Liu, B., Zhang, R., Braun, P. V., Deshpande, V. S. & King, W. P. (2019). High strength metallic wood from nanostructured nickel inverse opal materials. Scientific Reports, Vol. 9:719, pp.1—12. doi: https://doi.org/10.1038/s41598-018-36901-3
  4. Midukov, V. Z. & Rud, V. D. (1982). Experimental investigation of plastic strains of porous solids. A review. Powder Metall Met. Ceram., No. 21, pp. 607—611. doi: https://doi.org/10.1007/BF00795513
  5. Shima, S. & Oyane, M. (1976). Plasticity theory for porous metal. Int. J. Mech. Sci., Vol. 18, No. 6, pp. 285—291. doi: https://doi.org/10.1016/0020-7403(76)90030-8
  6. Green, R. G. (1972). A  plasticity  theory  for  porous  solids. Int. J. Mech. Sci., Vol. 14, No. 4, pp. 215—224.  doi:https://doi.org/10.1016/0020-7403(72)90063-X
  7. Shtern, M. & Cocks, A. C. F. (2001). The structure of constitutive laws for the compaction of metal powders. Recent Developments in Computer Modeling of Powder Metallurgy Processes, IOS Press, pp. 71—81.
  8. Gurson, A. (1977). Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media. J. Engineering Mater. and Technolog., Vol. 99, pp. 2—15. doi: https://doi.org/10.2172/7351470.
  9. Tvergaard, V. (1982). On localization in ductile materials containing spherical voids. Int. J. Fract., Vol. 4, No. 18, pp. 237—252. doi: https://doi.org/10.1007/BF00015686.
  10. Benzerga, A. & Leblond, J. B. (2010). Ductile fracture by void growth to coalescence. Adv. Appl. Mech., Vol. 44, pp. 169—305. doi: https://doi.org/10.1016/S0065-2156(10)44003-X.
  11. Fleck, N. A. (1995). On the cold compaction of powders. J. Mech. Phys. Solids, Vol. 43, pp. 1409—1431.  doi: https://doi.org/10.1016/0022-5096(95)00039-L.
  12. Shtern, M. B., Serdyuk, G. G., Maksimenko, L. A. (1982). Phenomenological theories of powder pressing. Kyiv: Nauk. dumka [in Russian].
  13. Deshpande, V. S. & Fleck, N. A. (2000). Isotropic constitutive model for metallic foams. J. Mech. Phys. Solids, No. 48, pp. 1253—1283. doi: https://doi.org/10.1016/S0022-5096(99)00082-4.
  14. Borja, R. I. & Lee, S. R. (1990). Cam-clay plasticity, part 1: implicit integration of elasto-plastic constitutive relations. Computer Methods in Appl. Mech.  Engineering, Vol. 78, No. 1, pp. 49—72. doi: https://doi.org/10.1016/0045-7825(90)90152-C.
  15. Bakhvalov, N. S. & Panasenko, G. P. (1989). Homogenisation: Averaging processes in periodic media. Kluwer Academic Publishers, doi: https://doi.org/10.1007/978-94-009-2247-1.
  16. Christensen, R. M. (1979). Mechanics of composite materials. New York: Wiley-Interscience. doi: https://doi.org/10.1002/pol.1980.130181009.
  17. Pobedrya, B. E. (1984). Mechanics of Composite Materials. Moscow: Izd. Mosk. Univ. [in Russian].
  18. Kuzmov, A., Olevsky, E. & Maximenko, A. (2008). Multi-scale modeling of viscous sintering. Modelling and Simulation in Mater. Sci. Engineering, Vol. 16, No. 3, pp. 035002.  doi: https://doi.org/10.1088/0965-0393/16/3/035002.