Temperature dependence of the Young's modulus of metals with different crystal lattices in a wide temperature range

  

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
lugovskoi_u@ukr.net
Usp. materialozn. 2023, 6:3-14
https://doi.org/10.15407/materials2023.06.003

Abstract

The known temperature dependences of the modulus of normal elasticity E, mainly of metals with different types of crystal lattices, were analyzed. The dependences of E/E0 on T/Tm and on T/Tpt are considered, where E0 is the modulus of elasticity extrapolated to 0 K, and Tm and Tpt are the melting and phase transition temperatures of the material, respectively. The difference in shape and slope of temperature dependences E/E0 of materials with bcc and fcc crystal lattices from materials with hcp crystal lattice is shown. If for the first two types of lattices, the dependences can be described by a second degree polynomial with coefficients close to 0,21 and 0,3, then the temperature dependences of the modulus of elasticity of titanium, zirconium, and its alloys are mostly linear and are significantly lower than the first ones due to the anisotropy of temperature changes of the lattice parameters a and c. The dependence of E/E0 on the c/a  ratio  is  plotted  for  a  number of hcp metals for two levels of T/Tpt, and the area of the best c/a values for creating materials with increased thermal elasticity is shown. The relationship between the dependences of E/E0 on E/E0 and the ratio of diffusion coefficients on E/E0 and examples of their use for the analysis of deformation mechanisms at high temperatures are shown.

 


Download full text

LATTICE PARAMETERS, TEMPERATURE DEPENDENCE OF THE MODULUS OF ELASTICITY

References

1. Frantsevich, I. N. Voronov, F. F., Bakuta, S. A. (1982). Uprugie postoyannyie i moduli uprugosti metallov i nemetallov / Pod red. I. M. Frantsevicha. K.: Nauk. dumka. 288 p. [in Russian].

2. Babichev, A. P., Babushkina, N. A., Bratkovsky, A. M., Grigoriev, I. S., Meilikhov, E. Z., Grigorieva, I. S., Meilikhova, E. Z. (1991). Fizicheskie velichinyi: (Sprav.). M.: Energoatomizdat, 1232 p. [in Russian].

3. Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set. https://books.google.com.ua/books?id=aPmGAwAAQBAJ&pg=RA5-PA30&lpg=RA5-PA30&dq=handbook+on+temperature+dependences+of+elastic+moduli+at+high+temperatures&source=bl&ots=6HoKc90m60&sig=ACfU3U3hM-FfdMB5AsdwD7jGEwfwwWYEMw&hl=ru&sa=X&ved=2ahUKEwjt6qKywabxAhWDgf0HHUjNBxEQ6AEwB3oECAsQAw#v=twopage&q=handbook%20on%20temperature%20dependences%20of%20elastic%20moduli%20at%20high%20temperatures&f=false

4. Ledbetter, H. M. (1982). Temperature behaviour of Young's moduli of forty engineering alloys. Cryogenics, pp. 653-656. doi:  https://doi.org/10.1016/0011-2275(82)90072-8

5. Drapkin, D. M., Kononenko, V. K., Bez'yazyichnyiy, V. F. (2004). Svoystva splavov v ekstremalnom sostoyanii. Moscow: Mashinostroenie, 256 s. [in Russian].

6. Zolotorevskiy, V. S. (1998). Mehanicheskie svoystva metallov. Uchebnik dlya vuzov. 3-e izd. Moscow: MISIS. 400 s. [in Russian].

7. Hil, W. Hl., Shimmin, K. E. (1961). Elevated temperature dynamic elastic moduli of various metallic materials. Mater. Central. WADD TECIINICAL REPORT 60-13874. March.

8. Indenbom, V. L., Orlov, A N. (1962). Fizicheskaya teoriya prochnosti i plastichnosti. Uspehi fiz. nauk, Vol. 76, vyp. 3, pp. 557-591 [in Russian]. doi: https://doi.org/10.3367/UFNr.0076.196203g.0557

9. Granato, A. V., Joncich, D. M., Khonik, V. A. (2010). Melting, thermal expansion, and the Lindemann rule for elemental substances. Appl. Phys. Lett., Vol. 97, pp. 171911.doi: https://doi.org/10.1063/1.3507897

10. Skoroa, G. P., Bennettb, J. R. J., Edgecockb, T. R., Grayb, S. A., McFarlandb, A. J., Bootha, C. N., Rodgersb, K. J., Bac, J. J. (2010). Dynamic Young's moduli of tungsten and tantalum at high temperature and stress. Preprint submitted to J. of Nuclear Materials, December 15.

11. Ziner, K. (1954). Uprugost i neuprugost metallov. Perev. L.A. Shubinoy/ Pod red. S. V. Vonsovskogo. Moscow: IL [in Russian].

12. Collard, S. M. (1991). High-temperature dependency elastic constans of gold single - crystals. A thesis submitted for the degree doctor of philosophy. Housten, Texas, 135 p. Name: 9136015.PDF

13. Natsionalnyiy standart Rossiyskoy Federatsii. GOST R8.982-2019. Standartnyie spravochnyie dannyie. Titanovyie splavyi marki VT. Skorost zvuka, otnositelnoe temperaturnoe rasshirenie, plotnost i modul Yunga v diapazone temperatur ot 20 do 800 °C [in Russian].

14. Rosinger, H. E., Ritchie, I. G., Shillinglaw, A. J. (1975). Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K. Whiteshell Nuclear Research Establishment Pinawa, Manitoba, ROE 1L0 September, pp.1-20.

15. Garlea, E., Radovic, M., Liaw, P. K. (2019). High-temperature dependency of elastic mechanical behavior of two wrought magnesium alloys AZ31B and ZK60A studied by resonant ultrasound spectroscopy. Mater. Sci. Engineering: A ( IF 4.652 ) -05-03. doi: 10.1016/j.doi: https://doi.org/10.1016/j.msea.2019.04.115

16. Varshni, Y. P. (1970). Temperature dependence of the elastic constants. Phys. Rev., Vol. 2, No.10.   doi: https://doi.org/10.1103/PhysRevB.2.3952

17. Firstov, S. A., Sarzhan, G. F. (2014). Temperature dependence of diffusion contstant. Elektronnaya mikroskopiya i prochnost materialov, Vyp. 20. pp. 71-75 [in Russian].

18. Zakarian, D., Khachatrian, A., Firstov, S. (2019). Universal temperature dependence of Young's modulus. Metal Powder Report, Vol. 74, No. 4, pp. 204-206. doi: https://doi.org/10.1016/j.mprp.2018.12.079

19. Sirota, N. N., Zhabko, T. E. (1981). X-Ray study of the anisotropy of thermal properties in titanium. Phys. Stat. Sol. (a), pp. K211-215. doi:https://doi.org/10.1002/pssa.2210630266

20. Russell, A. M., Cook, B. A. (1997). Coefficient of thermal expansion anisotropy and texture effects in ultra-thin titanium sheet. Scripta Materialia, Vol. 37, Is. 10, pp. 1461-1467. doi: https://doi.org/10.1016/S1359-6462(97)00312-6

21. Trojanova, Z., Maksimiyu, P. A., Lukas, P. (1994). Temperature dependence of Young's modulus of α-titanium polycrystals. Phys. Stat. Sol. (a), Vol. 143, pp. K75. doi: https://doi.org/10.1002/pssa.2211430238

22. Chernyaeva, T. P., Gritsina, V. M. (2008). Charactemistics of HCP metals determining their behavior under mechanical, thermal and radiation exposure. Voprosyi atomnoy nauki i tehniki, № 2, pp. 15-27 [in Russian]. URI: http://dspace.nbuv.gov.ua/handle/123456789/111096

23. Illarionov, A. G., Popov, A. A. (2014). Tehnologicheskie i ekspluatatsionnyie svoystva titanovyih splavov. Ekaterinburg: Izd-vo Ural. un-ta, 137 p. [in Russian].

24. Laplanche, G., Gadaud, P., Perriere, L., Guillot, I., Couzini, J. P. (2019). Temperature dependence of elastic moduli in a refractory HfNbTaTiZr high-entropy alloy. J. Alloys Comp., Vol. 799, pp. 538-545. doi: https://doi.org/10.1016/j.jallcom.2019.05.322

25. Firstov, S. O., Rogul, T. G. (2022). "Platean" on temperature dependence of the critical shear stress in binary and multicomponent solid solution and pure metals. Metallofiz. Noveishie Tekhnologii, Vol. 44, No. 1, pp. 127-140 [in Russian]. doi: https://doi.org/10.15407/mfint.44.01.0127.

26. Gertsriken, S. D., Dehtyar, I. Ya. (1960). Diffuziya v metallah i splavah v tverdoy faze. Moscow, 564 p. [in Russian].

27. Firstov, S. O., Gorban, V. F., Krapivka, N. A., Pechkovskiy, E. P., Eremenko, A. L. (2014). Estimation of transition temperature to diffusion deformation mechanisms in single-phase BCC high entropy alloys of equiatomic composition. Kompozityi i nanostruktury, Vol. 6, No. 3, pp. 125-136 [in Russian].