Conferences

Thermoactivation analysis of temperature dependence of hardness in quasicrystals of the system Al—Cu—Fe

Yu.Milman,
     

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
irina@ipms.kiev.ua
Usp. materialozn. 2022, 4/5:51-64
https://doi.org/10.15407/materials2022.04-05.051

Abstract

The results of thermoactivation analysis of the temperature dependence of hardness for icosahedral quasicrystals (QC) of the Al–Cu–Fe system obtained as a coating, massive compact and ingot are presented. QC as well as covalent crystals at room temperature are brittle without signs of macroplastic deformation at standard methods of mechanical testing and only the method of local indenter loading makes it possible to deform QC to significant degrees of deformation without fracture. In the studied temperature range 77–1073 K, the HV(T) hardness dependences have the same character, despite the state in which the QC was obtained. The HV(T) dependence consists from two sections: an athermal low-temperature section (77–600 K) and a section (>600 K) where the hardness decreases sharply with increasing temperature. The presence of a low-temperature athermal section on the HV(T) dependence is explained by the phase transition of the QC to a more plastic approximant phase. Phase transition of this type can be associated with a high density of phason defects, which are formed during the deformation of the QC that leads to violations of the atomic structure. Based on the experimental data of the temperature dependences of the Vickers hardness (HV) obtained by the authors and the literature data, the values of the activation energy of the dislocation motion U and the activation volume V of a number of icosahedral quasicrystals were calculated. It is shown that the value of U≈ 0,97–1,83 eV, and V is (65–132)·10-24cm3 . Previously, the method of thermoactivation analysis of temperature dependence of a flow stress was applied to materials with different crystal structures (BCC, FCC metals, covalent crystals, refractory compounds, intermetallics, high entropy alloys). In comparison with crystalline materials, the values of thermal activation parameters of the deformation process for QC are close to refractory compounds (carbides, borides) which have a covalent component in the interatomic bond.


Download full text

ACTIVATION ENERGY OF DISLOCATION MOTION, ACTIVATION VOLUME, HARDNESS, QUASICRYSTAL, TEMPERATURE

References

1. Dubois, J.-M. (1998). IntroductiontoQuasicrystals. Berlin: SpringerVerlag.

2. Dubois, J.-M. (2000). New prospects from potential applications of quasicrystalline materials. Mater.Sci. Eng., Vol.294—296, pp. 49. doi: https://doi.org/10.1016/S0921-5093(00)01305-8

3. Pozdnyakov, V. A. (2007). Physical Material Science of Nanostructured Materials: Textbook. Moscow: MGIU [in Russian].

4. Shechtman, D., Blech, I., Gratias, D., Cahn, J. W. (1984). Metallic phase long-range orientational order and no translational symmetry. Phys. Rev. Lett., Vol. 53, No. 20, pp. 1951—1953. doi: https://doi.org/10.1103/PhysRevLett.53.1951

5. Ebert, Ph., Feuerbacher, M., Tamura, N., Wollgarten, M., Urban, K. (1996). Evidence for a cluster-based structure of AlPdMn single quasicrystals. Phys. Rev. Lett., Vol. 77, No. 18, pp. 3827—3830.doi: https://doi.org/10.1103/PhysRevLett.77.3827

6. Katz, A., Gratias, D. (1995, 22-26 May). Chemical order and local configurations in AlCuFe-type icosahedral phases. Proc. of the 5th Internat. conf. on Quasicrystals, pp. 164—167, Avignon, Singapore: World Scientific.

7. Dong, Ch., Perrot, A., Dubois, J. M., Belin, E. (1994). Hume-Rothery phases with constant e/a value and their related electronic properties in Al—Cu—Fe(Cr) quasicrystalline systems. Mater. Sci. Forum., Vol. 150—151, pp. 403—416. doi: https://doi.org/10.4028/www.scientific.net/MSF.150-151.403

8. Milman, Yu. V., Efimov, N. A. (2009). Quasicrystals and nano-quasicrystals are new promising materials.Promising materials (to the 60th anniversary of Doctor of Technical Sciences V. V. Rubanik. pp. 31-60, Vitebsk: UO “VGTU” [in Russian].

9. Bresson, I., Gratias, D. (1993). Plastic deformation in AlCuFe icosaherdal phase. J. Non-Cryst. Solids., Vol. 153—154, pp. 468—472. doi: https://doi.org/10.1016/0022-3093(93)90397-G

10. Kisel, V. M., Evdokimenko, Yu. I., Kadyirov, V. H., Frolov, G. A. (2007). High-velocity air-fuel spraying is a modern method for applying heat- and wear-resistant metal and composite coatings. Aviatsionno-kosmicheskaya tehnika i tehnologiya, No. 8 (44), pp. 31—35 [in Russian].

11. Gudtsov, N. T., Lozinskiy, M. G. (1952). Study of the aging process of metals and alloys by measuring the hardness during heating in vacuum. Zhurn. Tehn. Fiziki, Vol. 22, No. 8, pp. 1249—1252[in Russian].

12. Milman, Yu. V., Sklyarov, O. E., Trefilov, V. I., Udovenko, A. A. (1967). Device PMTN for measuring microhardness at low temperatures under a layer of cooling liquid.Research in the field of hardness measurement. Trudyi metrologicheskih institutov SSSR, Izd-vo standartov, No. 91 (151), pp. 167—169 [in Russian].

13. Milman, Yu. V., Trefilov, V. I. (1966). On the physical nature of the temperature dependence of the yield strength.Mechanism of destruction of metals, pp. 59—76, Kyiv: Nauk. dumka [in Russian].

14. Trefilov, V. I., Milman, Yu. V., Firstov, S. A. (1975). Physical foundations of the strength of refractory metals. Kyiv: Nauk. dumka[in Russian].

15. Tabor, D. (1951). The Hardness of Metals. Oxford: Clarendon Press.

16. Yokoyama, Y., Inoue, A., Masumoto, T. (1993). Mechanical properties, fracture mode and deformation behavior of Al70Pd20Mn10 single-quasicrystal. Mater. Transactions, JIM, Vol. 34, No. 2, pp. 135—145. doi: https://doi.org/10.2320/matertrans1989.34.135

17. Tsai, A. P., Suenaga, H., Ohmori, M., Yokoyama, Y., Inoue, A., Masumoto, T. (1992). Temperature dependence of hardness and expansion in an icosahedral Al—Pd—Mn alloy. Jpn. J. Appl. Phys., Vol. 31, pp. 2530—2531.doi: https://doi.org/10.1143/JJAP.31.2530

18. Fujiwara, T. and Ishii, Y. (Eds.). (2008). Quasicrystals: Handbook of Metal Physics. Elsevier.

19. Wollgarten, M.,Bartschs, M.,Messerschmidt, U.,Feuerbacher, M.,Rosenfeld, R., Beyss, M. (1995). In-situ observation of dislocation motion in icosahedral Al—Pd—Mn single quasicrystals. Phil. Mag. Lett., Vol. 71, No. 2, pp. 99—105. doi: https://doi.org/10.1080/09500839508241001

20. Kléman, M. (1988).Imperfections in quasicrystals: Dislocations / Eds. Janot, C. and Dubois,J. M.Quasicrystalline Materials, pp. 318, World Scientific.

21. Feuerbacher,M.,Metzmacher, C., Wollgarten, M., Urban, K.,Baufeld, B.,Bartsch, M.,Messerschmidt,U. (1997). Dislocations and plastic deformation of quasicrystals. Mater. Sci. Eng. A., Vol. 226—228, pp. 943-—949. doi: https://doi.org/10.1016/S0921-5093(97)80097-4

22. Azhazha, V. M., Borisova, S. S., Dub, S. N., Malykhin, S. V., Pugachov, A. T., Merisov, B. A., Khadzhay, G. Ya. (2005). Mechanical behavior of Ti—Zr—Ni quasicrystals during nanoindentation. Phys. Solid State, Vol. 47, pp. 2262—2267. doi: https://doi.org/10.1134/1.2142888

23. Dubois, J.-M., Thiel, P. A., Tsai, A.-P., Urban, K. (Eds.). (1998). Quasicrystals. Materials Research Society Symposium Proceedings. Vol. 553. Pennsylvania: Warrendale.

24. Gridneva, I. V., Milman, Yu. V., Trefilov, V. I. (1972). Phase transition in diamond structure crystalsat hardness measurement. Phys. Status Solidi (a), Vol. 14, pp. 177—182. doi: https://doi.org/10.1002/pssa.2210140121

25. Inoue, A., Yokoyama, Y., Masumoto, T. (1994). Mechanical properties and deformation behaviour of large Al70Pd20Mn10 single quasi-crystals. Mater. Sci. Eng: A, Vol. 181—182, pp. 850—855. doi: https://doi.org/10.1016/0921-5093(94)90754-4

26. Saito, T., Miyaki, K., Kamimura, Y., Edagawa, K., Takeuchi, S. (2005). Plastic deformation of Mg—Zn—Y scosahedral quasicrystals under confining pressure. Mater. Trans., Vol. 46, No. 2, pp. 369—371. doi: https://doi.org/10.2320/matertrans.46.369

27. Samsonov, G. V., Upadhaya, G. Sh., Neshpor, V. S. (1974). Physical Materials Science of Carbides. Kyiv: Nauk.dumka[in Russian].

28. Milman,Yu. V. (2014). The effect of structural state and temperature on mechanical properties and deformation mechanisms of WC—Co hard alloy. J. Superhard Mater., Vol. 36, No. 2, pp. 65—81. doi: https://doi.org/10.3103/S1063457614020014

29. Mordovets, N. M. (2008). Temperature dependence of the hardness of intermetallic compounds with the participation of Al and some eutectic alloys based on them. Dopov. Nats. akad. nauk Ukra., No. 10, pp. 106—111 [in Russian].

30. Firstov, S. O., Rogul, T. G., Krapivka, M. O., Chugunova, S. I. (2018). Thermoactivation analysis of temperature dependence of a flow stress in solid solutions with a B.C.C. lattice. Metallofiz. noveyshie tehnolog., Vol. 40, No. 2, pp. 219—234 [in Russian]. doi: https://doi.org/10.15407/mfint.40.02.0219

31. Firstov, S. O., Rogul, T. G. (2017). Thermoactivation analysis of the flow-stress–temperature dependence in the F.C.C. solid solutions. Metallofiz. noveyshie tehnolog., Vol. 39, No. 1, pp. 33—48 [in Russian]. doi: https://doi.org/10.15407/mfint.39.01.0033