The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime from Boundary to Hydrodynamic

 
O.O.Ajayi 2,
 
A.Erdemir 3,
 
G.Fenske 4,
 
I.Etsion 5
 

1 Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , вул. Омеляна Пріцака, 3, Київ, 03142, Україна
2 Argonne National Lab., Energy Systems Division, Argonne, IL, US
3 Texas A&M University Department of Mechanical Engineering
4 Argonne National Laboratory, ANL · Center for Transportation Research
5 Technion - Israel Institute of Technology Haifa, Israel
ankov@netzero.com

Tribology Transactions, 2004, Т.47, #2
https://doi.org/10.1080/05698190490440902

Анотація

Laser surface texturing (LST) is an emerging, effective method for improving the tribological performance of friction units lubricated with oil. In LST technology, a pulsating laser beam is used to create thousands of arranged microdimples on a surface by a material ablation process. These dimples generate hydrodynamic pressure between oil-lubricated parallel sliding surfaces. The impact of LST on lubricating-regime transitions was investigated in this study. Tribological experiments were carried out on pin-on-disk test apparatus at sliding speeds that ranged from 0.15 to 0.75 m/s and nominal contact pressures that ranged from 0.16 to 1.6 MPa. Two types of oil with different viscosities (54.8 cSt and 124.7 cSt at 40°C) were evaluated as lubricants. Electrical resistance between flat-pin and laser-textured disks was used to determine the operating lubrication regime. The test results showed that laser texturing expanded the range of speed-load parameters for hydrodynamic lubrication. LST also reduced the measured friction coefficients of contacts that operated under the hydrodynamic regime. The beneficial effects of laser surface texturing are more pronounced at higher speeds and loads and with higher viscosity oil.


ГІДРОДИНАМІЧНИЙ, КОЕФІЦІЄНТ ТЕРТЯ, КОНТАКТНИЙ ОПІР, ЛАЗЕРНЕ ТЕКСТУРУВАННЯ ПОВЕРХНІ, МЕЖА, РЕЖИМ МАСТИЛА

Посилання

1. Tian, H., Saka, N. and Suh, N. P. (1989), “Boundary Lubrication Studies of Undulated Titanium Surfaces,”Tribol. Trans., 32, pp 289-296.

2.  Etsion, I., Kligerman, Y. and Halperin, G. (1999), “Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces,”Tribol. Trans., 42, pp 511-516.

3. Etsion, I. and Halperin, G. (2002), “A Laser Surface Textured Hydrostatic Mechanical Seal,”Tribol. Trans., 45, pp 430-434.

4. Ronen, A., Etsion, I. and Kligerman, Y. (2001), “Friction-Reducing Surface Texturing in Reciprocating Automotive Components,”Tribol. Trans., 44, pp 359-366.

5. Ryk, G., Kligerman, Y. and Etsion, I. (2002), “Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components,” Tribol. Trans., 45, pp 444-449

6. Furey, M. G. (1961), “Metallic Contact and Friction between Sliding Sur-faces,”ASLE Trans., 4, 1, pp 1-11.

7. Tallian, T. E., Brady, E. F., McCool, J. I. and Sibley, L. B. (1965) “Lubricant Film Thickens and Wear in Rolling Point Contact,”ASLETrans.,8, p 414.

8. Christensen, H. (1965-66), “Nature of Metallic Contact in Mixed Lubrication,”Proc. Inst. Mech. Eng. Lond. Part 3B,180, p 147.

9. Holm, R. (1967), Electrical Contacts, Springer, Berlin.

10. Czichos, H., Grimmer, W. and Mittmann, H. (1976), “Rapid Measuring Technique for Electrical Contact Resistance Applied to Lubricant Addi-tives Studies,”Wear,40, 2, pp 265-271

11. Tonck, A., Martin, J. M., Kapsa, Ph. and George, J. M. (1979), “Boundary Lubrication with Antiwear Additives: Study of Interface Film Formation by Electrical Contact Resistance,”Tribol. Int., 12, pp 209-213.

12. Myshkin, N. K. and Konchits, V. V. (1994), “Evaluation of the Interface at Boundary Lubrication using the Measurement of Electric Conductivity,” Wear,172, pp 29-40.

13. Konchits, V. V., Kirpichenko, Y. E. and Myshkin, N. K. (1996), “Micromechanics and Electrical Conductivity of Point Contacts in Boundary Lubrication,”Tribol. Int., 29, 5, pp 365-371.