Ductile mode behavior of silicon during scribing by spherical abrasive particles

A.Kumar 1*,
  
V.Pogue 1,
 
E.Pashchenko 3,
 
S.Melkote 1
 

1 Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2 Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , вул. Омеляна Пріцака, 3, Київ, 03142, Україна
3 Інститут надтвердих матеріалів ім. В.М.Бакуля НАНУ, Київ, Україна
* arkadeepkumar@gatech.edu, ** ankov@netzero.com

Procedia CIRP , 2016, Т.45
https://doi.org/10.1016/j.procir.2016.02.341

Анотація

Reducing surface and subsurface damage in cutting brittle materials using fixed abrasive processes like wire sawing is an important challenge. This paper investigates the effect of size and shape of abrasives on ductile mode cutting of single crystal silicon. Diamond and tungsten carbide abrasives of different shapes (irregular and spherical) deposited on a steel surface are used to scribe silicon and the material removal mode is analyzed. Experiments show that spherical abrasives enhance ductile mode cutting when compared to irregular shapes, yielding a smoother surface and significantly fewer micro-cracks.


КАРБІД ВОЛЬФРАМУ, КРЕМНІЙ, ЦІЛІСНІСТЬ ПОВЕРХНІ

Посилання

1. Blake, P.N. and Scattergood, R.O., 1990. Ductile u Regime Machining of Germanium and Silicon. Journal of the American ceramic society 73(4), p. 949- 957.

2. Kovalchenko, A., 2013. Studies of the Ductile Mode of Cutting Brittle Materials (a Review). Journal of Superhard Materials 35(5), p. 259-276.

3. Gridneva, I., Milman, Y.V., and Trefilov, V., 1972. Phase Transition in DiamonduStructure Crystals During Hardness Measurements. Physica status solidi (a) 14(1), p. 177-182.

4. Kovalchenko, A. and Milman, Y.V., 2014. On the Cracks Self-Healing Mechanism at Ductile Mode Cutting of Silicon. Tribology International 80, p. 166-171.

5. Brinksmeier, E., Preub, W., Riemer, O., and Malz, R. 1998. Ductile to Brittle Transition Investigated by Plunge-Cut Experiments in Monocrystalline Silicon. in Proceedings of the ASPE 1998 Spring Topical Meeting.

6. Tanikella, B., Somasekhar, A., Sowers, A., Nemanich, R., and Scattergood, R., 1996. Phase Transformations During Microcutting Tests on Silicon. Applied physics letters 69(19), p. 2870-2872.

7. Jasinevicius, R., Porto, A., Duduch, J., Pizani, P., Lanciotti Jr, F., and dos Santos, F., 2005. Multiple Phase Silicon in Submicrometer Chips Removed by Diamond Turning. Journal of the Brazilian Society of Mechanical Sciences and Engineering 27(4), p. 440-448.

8. Gogotsi, Y., Zhou, G., Ku, S.-S., and Cetinkunt, S., 2001. Raman Microspectroscopy Analysis of Pressure-Induced Metallization in Scratching of Silicon. Semiconductor science and technology 16(5), p. 345.

9. Zhou, M., Ngoi, B., Zhong, Z., and Chin, C., 2001. Brittle-Ductile Transition in Diamond Cutting of Silicon Single Crystals. Materials and Manufacturing Processes 16(4), p. 447-460.

10. Patten, J.A., Jacob, J., Bhattacharya, B., Grevstad, A., Fang, N., and Marsh, E.R., 2007. Numerical Simulations and Cutting Experiments on Single Point Diamond Machining of Semiconductors and Ceramics. Semiconductor Machining at the Micro-Nano Scale, Transworld Research Network, Trivandrum.

11. Wu, H. and Melkote, S.N., 2012. Study of Ductile-to-Brittle Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers. Journal of Engineering Materials and Technology 134(4), p. 041011.

12. Misra, A. and Finnie, I., 1979. On the Scribing and Subsequent Fracturing of Silicon Semiconductor Wafers. Journal of Materials Science 14(11), p. 2567-2574.

13. Hopcroft, M.A., Nix, W.D., and Kenny, T.W., 2010. What Is the Young's Modulus of Silicon Journal of Microelectromechanical Systems 19(2), p. 229- 238.

14. Dzykovich, V.I., Zhudra, A.P., and Bely, A.I., 2010. Properties of Tungsten Carbide Produced by Different Technologies. The Paton Welding Journal 4, p. pp. 22-24.

15. Khayyat, M.M., Banini, G.K., Hasko, D.G., and Chaudhri, M.M., 2003. Raman Microscopy Investigations of Structural Phase Transformations in Crystalline and Amorphous Silicon Due to Indentation with a Vickers Diamond at Room Temperature and at 77 K. Journal of Physics D: Applied Physics 36(11), p. 1300.

16. Das, C.R., et al., 2010. A Complete Raman Mapping of Phase Transitions in Si under Indentation. Journal of Raman Spectroscopy 41(3), p. 334-339.