Conferences

The estimation of energy and elastic properties of TiAlNb materials based on results of first principles calculations

  

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
avilon57@ukr.net
Usp. materialozn. 2021, 3:55-65
https://doi.org/10.15407/materials2021.03.055

Abstract

The results of research of isolated TiAlNb clusters are presented. The models of isolated clusters of 27, 59, 65 atoms in size which is fragments of the bcc structure have been constructed. The models stoichiometry imitate α-, γ-, α+γ- та β-phase TiAlNb alloys. The structural, cohesive and electronic properties of these clusters have been investigated within the framework of electronic density functional theory with PBE0 functional with a set of MINI basis functions with application of Gaussian'03 and GAMESS software packages. It was found that upon transition of the cluster structure from the α- to the β-phase, the cohesion energy increases and the crystal lattice period decreases. This corresponds to an increase in the values of the structure strength and density. For the calculation of the bulk modulus were utilized value of changes in energy and volume of cluster, got in research. The bulk modulus of the isolated β-phase TiAlNb cluster is predicted. This bulk modulus near to 142.4 GPa. The result was extended to volumetric structures. The investigation showed that bulk modulus of Ti2AlNb materials near to 163.6 GPa. Comparison of calculation results with experimental values of elastic moduli of materials with similar structure and composition is carried out. The comparison revealed the agreement between the calculated values and the results of experiments. A method is proposed for evaluating the elastic properties of TiAlNb alloys based on the results of first principles calculation


Download full text

ALUMINIDE TITANIUM, ALLOYING, COMPUTER MATERIALS SCIENCE, ELASTIC MODULI

References

1. Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., & McFarland, M. (Eds.). (1999). Intergovernmental Panel on Climate Change (IPCC) special report on aviation and the global atmosphere. Intergovernmental Panel on Climate Change. Cambridge University Press. 393 p.

2. Mayer, S., Erdely, P., Fischer, F. D., Holec, D., Kastenhuber, M., Klein, T., & Clemens, H. (2017). Intermetallic β-solidifying γ-TiAl based alloys. From fundamental research to application. Adv. Eng. Mat., Vol. 19 (4), pp. 1600735—1600739. doi: https://doi.org/10.1002/adem.201600735

3. Zhang, D., Dehm, G., & Clemens, H. (2000). Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a β/B2 containing γ-TiAl based alloy. Scr. Mater., Vol. 42 (11), pp. 1065—1070. doi: https://doi.org/10.1002/adem.201600735

4. Bondar, A. A., Vitusevych, V. T., Khekht, U., Remez, M. V., Voblikov, V. M., Tsyhanenko, N. I., Yevych, Ya. I., Podrezov, Yu. M., Velykanova, T. Ya. (2011). Structure and properties of titanium aluminides, alloyed by niobium and tantalum. Poroshkova metalurhiia, No. 7—8, pp. 25—46 [in Ukrainian].

5. Remez, M. V., Podrezov, Yu. M., Bondar, A. A., Vitusevych, V. T., Khekht, U., Voblikov, V. M., Tsyhanenko N. I. Yevych, Ya. I., Velykanova, T. Ya. (2016). Structure and properties of alloys based on TiAl, alloyed by niobium and chromium. Poroshkovaia metallurhyia, No. 1/2, pp. 119—140 [in Ukrainian].

6. Firstov, S. A., Gornaya, I. D., Podrezov, Yu. N. (2018, June). Complex alloyed alloys based on titanium aluminides. Tytan–2018: vyrobnytstvo ta zastosuvannia v Ukraini. Materialy Mizhnarodnoi konf., (6 p.) Kyiv [in Russian].

7. Firstov, S. A., Gornaya, I. D., Podrezov, Yu. N., Bondar, A. A. & Sheremetyev, A. V. (2018). Properties of alloys based on titanium aluminides γ-TiAl/α2Ti3Al with complex alloying. Spetsial’naya elektrometallurgiya, No. 3/4, pp. 28—32 [in Russian]. doi: https://doi.org/10.15407/sem2018.03.05

8. Kim, Y. W., Smarsly, W., Lin, J., Dimiduk, D., & Appel, F. (Eds.). (2014). Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology. NJ: John Wiley & Sons. 84 p.

9. Appel, F., Paul, J. D. H., & Oehring, M. (2011). Gamma titanium aluminide alloys. Sci. Technology. Weinheim, 745 p. doi: https://doi.org/10.1002/9783527636204

10. Clemens, H., & Mayer, S. (2013). Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mat., Vol. 15 (4), pp. 191— 215. doi: https://doi.org/10.1002/adem.201200231

11. Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A., & Bartels, A. (2008). Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability. Adv. Eng. Mat., Vol. 10 (8), pp. 707—713. doi: https://doi.org/10.1002/adem.200800164

12. Perdew, J. P., Ernzerhof, M., & Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., Vol. 105 (22), pp. 9982—9985. https://doi.org/10.1063/1.472933

13. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., Vol. 77 (18), pp. 3865—3868. doi: https://doi.org/10.1103/PhysRevLett.77.3865

14. Huzinaga, S., Andzelm, J., Klobukowski, M., Radzio-Andzelm, E., Sakai, Y., and Tatewaki, H. (1984). Gaussian Basis Sets for Molecular Calculations. Amsterdam: Elsevier, 1984. 425 p.

15. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, Jr. T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. and Pople, J. A. (2003). Gaussian 03, Revision B. 03, Gaussian Inc., Pittsburg PA, 354 p.

16. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). General atomic and molecular electronic structure system. J. Computational Chem., Vol. 14 (11), pp. 1347—1363. doi: https://doi.org/10.1002/jcc.540141112

17. Portmann, S., & Lüthi, H. P. (2000). MOLEKEL: an interactive molecular graphics tool. CHIMIA Internat. J. Chem., Vol. 54 (12), pp. 766—770.

18. Ovsiannikova, L. I. (2019). Atomic structure and cohesion energy of ZnSe and CdSe clusters. Phys. Solid State, Vol. 61 (4), pp. 673—679. doi: https://doi.org/10.1134/S1063783419040206

19. Ovsiannikova, L. I. (2020). Atomic structure and cohesion energy of isolated SiC clusters. Fizika Tverdogo Tela, Vol. 62 (6), pp. 974—978 [in Russian]. doi: https://doi.org/10.21883/FTT.2020.06.49360.633

 20. Lisenko, A. A., Bekenev, V. L., Ogorodnjikov, V. V., Kartuzov, V. V. (2012). Computer simulation of high entropy multi-component alloys within cluster approach. Matematicheskie modeli i vychislitel’nyj jeksperiment v materialovedenii. Kyiv: In-t probl. materialovedenija NAN Ukrainy, Iss. 14, pp. 134—141.

21. Kartuzov, V., Rozhenko, N., Efimova, E., & Danilyuk, V. M. (2020). Applying simulation results of high-boron compounds of structure at the atomic level to estimate their chemical hardness. Uspikhy materialoznavstva, Iss. 1, pp. 8—16 [in Ukrainian]. doi: https://doi.org/10.15407/materials2020.01.008

22. Schuster, J. C., & Palm, M. (2006). Reassessment of the binary aluminum-titanium phase diagram. J. Phase Equilibria Diff., Vol. 27 (3), pp. 255—277. doi: https://doi.org/10.1361/154770306X109809

23. Total Materia. The world’s most comprehensive materials database — Titanium Aluminide Alloys: Part One. Jul-2011. Retrieved from https://www.totalmateria.com/

24. Livshits, B. G. (1959). Physical Properties of Alloys. Moskva: Mashgiz, 366 p. [in Russian].

25. Fisher, E. S., & Renken, C. J. (1961). Adiabatic elastic moduli of single crystal alpha zirconium. J. Nuclear Mater., Vol. 4 (3), pp. 311—315. doi: https://doi.org/10.1016/0022- 3115(61)90081-2

26. Schafrik, R. E. (1977). Dynamic elastic moduli of the titanium aluminides. Metall Mater. Trans., Vol. 8 (6), pp. 1003—1006. doi: https://doi.org/10.1007/BF02661586