Conferences

Thermodynamic properties of alloys In—Tb system

A.S.Dudnik 1,
 
Kudin V.G 2,
   

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 Taras Shevchenko National University of Kyiv, Kyiv
sud.materials@ukr.net

Usp. materialozn. 2021, 2:79-89
https://doi.org/10.15407/materials2021.02.079

Abstract

The method of isoportic calorimetry investigated the thermochemical properties of the melt In—Tb system in the range of compositions 0 < xIn < 0,4 at 1625 ± 1 K. The obtained data were extrapolated on a non-investigated concentration interval, given that when xTb = 1 integral and partial to Tb enthalpia mixing is zero. It was established that the first partial for Terbium and the minimum enthalpy of mixing is –145 ± 7 and –40,1 ± 0,2 kJ/mol respectively. Comparison of ΔHmin, the melt of five previously investigated In—Ln systems from the serial number Ln (zLn), together with the data obtained in this papper, showed that they are described by one trend line. For ΔHmin In—Eu (Yb) melts (Yb) are very slight deviations from the trend line. But for dimensional factor, these deviations from the trend line are more significant. Enthalpia of the formation of some In—Ln intermetallides are known, with most of them relate to the LnIn3 compound. But there is no full reconciliation between these data. The results of the most modern work exhibit less dependence on the serial number of lanthanides and are more exothermic for heavy lanthanides, compared with other data. Comparing thermochemical properties of double Sn (Sb)—REM melt systems. It has been established that the energy of the interaction between the data p-elements and REM increases in such a sequence: In-REM → Sn—REM → Sb—REM. This is due to the fact that the stibium is the best acceptor of electrons.


Download full text

COMPOUNDS, IN, MELTS, TB, THERMOCHEMICAL PROPERTIES

References

1. Masalsky, T. B. (1990). Binary Alloy Phase Diagrams 2nd edn (Metals Park, OH: ASM International).

2. Lebedev, V. A., Kober, V. I., Yamshchikov, L. F. (1989). Thermochemistry of alloys of rare-earth and actinoid elements. Really. ed. Chelyabinsk: Metallurgy, Chelyabinsk. Dep. P. 336

3. Shevchenko, M. O., Berezutski, V. V., Ivanov, M. I., Kudin, V. G., Sudavtsova, V. S. (2015). Thermodynamic properties of alloys of the binary Al—Sm, Sm—Sn and ternary Al—Sm—Sn systems. J. Phase Equilib. Diff. V. 36 (1). P. 39—52.

4. Dinsdale, A. T. (1991). SGTE data for pure elements. Calphad. Vol. 15, No 4. Р. 319—427.

5. De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., Niessen, A. K. (1988). Cohesion in Metals. Transition metal alloys. // in F.R. De Boer, D.G. Pettifor eds., Cohesion and structure Series, North-Holland,Amsterdam etc. P. 758.

6. Colinet, C. (1995). The thermodynamic properties of rare earth metallic systems. J. Alloys Compd. Vol. 225. P. 409—422.

7. Meschel, S. V., Kleppa, O. J. (2002). Standard enthalpies of formation of some lanthanide indium compounds by high temperature direct synthesis calorimetry. J. Alloys and Compounds. 337. P. 115—119.

8. Palenzona, A., Cirafici, S. (1974). Dynamic differential calorimetry of intermetallic compounds: III. Heats of formation, heats and entropies of fusion of REIn3 and RETl3 compounds. Thermochim. Acta, 9. S. 419.

9. Borsese, A., Calabreta, A., Delfino, S., Ferro, R. (1977). Measurements of heats of formation in the lanthanum-indium system. J. Less-Common Met. 51. S. 45.

10. Serebrennikov, V. V., Novozhenov, V. A., Shkolnikova, T. M. (1975). Heats of formation of alloys of lanthanum with indium. J. Physical Chemistry. Vol. 49. Issue 11. P. 3012.

11. Serebrennikov, V. V., Novozhenov, V. A., Shkolnikova, T. M. (1976). Heats of formation of alloys of praseodymium with indium. J. Physical Chemistry. Vol.50. Issue 11. S. 2401—2402.

12. Serebrennikov, V. V., Novozhenov, V. A., Shkolnikova, T. M. (1979). Heats of formation of alloys of neodymium with indium. J. Physical Chemistry. Vol. 50. Issue 8. Deposited in VINITI 01/16/1979. No. 89.

13. Degtyar, V. A., Vnuchkova, L. A., Bayanov, A. P., Serebrennikov, V. V. (1971). Thermodynamic study of liquid cerium-indium alloys. J. Physical Chemistry, Vol. 45. No. 6. S. 1594.

14. Degtyar, V. A., Bayanov, A. P., Vnuchkova, L. A., Serebrennikov, V. V. (1971). Thermodynamics of liquid praseodymium-indium alloys. J. Physical Chemistry, Vol. 45. No. 7. S. 1816—1818.

15. Degtyar, V. A., Bayanov, A. P., Serebrennikov, V. V. (1971). Thermodynamics of interaction of neodymium with indium. Proceedings of the Tomsk University, T. 204. S. 401—402.

16. Bayanov, A. P., Ganchenko, E. N., Afanasyev, Yu. A. (1977). Investigation of the thermodynamic properties of terbium alloys with indium and lead by the EMF method. J. Physical Chemistry. T. 51. S. 2381—2382.

17. Vasiliev, V. P., Khue, V. D. (1985). Thermodynamic Properties of Phases in the Gadolinium-Indium System for Gadolinium Concentrations up to 50% (at.). Izv. Akad. Nauk SSSR, Neorg. Mater. 21. S. 1144—1148.

18. Rabinovich, V. A., Khavin, Z. Ya. (1977). A short chemical reference book. L.: Chemistry. 376 p.

19. Berezutski, V. V., Ivanov, M. I., Shevchenko, M. O., Sudavtsova, V. S. (2015). Thermodynamic properties of Eu–In alloys // Powder Metallurgy and Metal Ceramics, March, Vol. 53, No. 11—12. P. 693—700. DOI: 10.1007/s11106-015-9665-z.

20. Ivanov, M. I., Berezutski, V. V., Shevchenko, M. O., Sudavtsova, V. S. (2015). Thermodynamic properties of binary Ce—In alloys. Powder Metallurgy and Metal Ceramics. Vol. 54, No. 3—4. P. 194—200. DOI: 10.1007/s11106-015-9698-3.

21. Thermodynamic properties of alloys of the binary Gd—In system. Russian J. Phys. Chem. A, 2016, Vol. 90, No. No. 1, P. 3—12 1. DOI: 10.1134/S0036024415120274.

22. Shevchenko, M. A., Ivanov, M. I., Berezutski, V. V., Sudavtsova, V. S. (2016). Thermodynamic properties of alloys of alloys of the binary In—Yb system. Russian J. Phys. Chem. A. Vol. 90, No. 5. P. 893—902. DOI: 10.1134/S0036024416050289).

23. Shevchenko, M. A., Ivanov, M. I., Berezutski, V. V., Sudavtsova, V. S. (2016). Thermodynamic properties of alloys of alloys of the binary In—La system. Russian J. Phys. Chem. A. Vol. 90, No. 6, P. 1101—1114. DOI: 10.1134.