Conferences

Long-term oxidation resistance of titanium materials for hybrid fuel cells

V.Ya.Podhurska 1*,
  
B.D.Vasyliv 1,
 
R.V.Chepil 1,
 
O.P.Ostash 1
 

1 Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
2 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
podhurskavika@gmail.com

Usp. materialozn. 2021, 2:35-44
https://doi.org/10.15407/materials2021.02.035

Abstract

Hybrid SOFC-MGT systems, which combine a solid oxide fuel cell (SOFC) and a gas microturbine (MGT) are capable of generating clean energy with high efficiency. Compared to large turbines in aviation and other areas of mechanical engineering and energetics, the requirements for mechanical properties of MGT materials in SOFC may be less strong, but one of the most important is resistance to long-term oxidation. For SOFC materials it is considered that oxidation resistance test duration must be not less than 1000 h. In addition, today there is a tendency to developing average-temperature (550—650 oC) SOFC modifications. Physical and mechanical properties, the long-term (1000 hours) oxidation resistance at 600 °C in particular, for a number of titanium alloys and composites depending on their chemical and phase composition and production method have been studied. These materials are promising for gas microturbines of a hybrid system “solid oxide fuel cell — gas turbine”. Cast, thermally deformed (forging, rolling), and heat-treated titanium alloys and also sintered and hotpressed titanium composites have been investigated. They were compared to the most widely used in mechanical engineering and other industries Ti—6Al—4V alloy. It was shown that materials of the Ti—Al—X system (X = C, Nb, Mo) based on titanium MAX phases with nanolaminate microstructure have an advantage. At the same time, alloys based on titanium aluminides γ-TiAl / α2-Ti3Al in the cast state have the highest longterm heat resistance, as well as the best complex of physical and mechanical characteristics among the studied materials.


Download full text

CHEMICAL AND PHASE COMPOSITION, LONG - TERM HEAT RESISTANCE, MECHANICAL PROPERTIES, TITANIUM ALLOYS

References

1. Tomida, K., Kodo, K., Kobayashi, D., Kato, Y., Suemori, S. & Urashita, Y. (2018, December). Efforts toward introduction of SOFC-MGT hybrid system to the market. Mitsubishi Heavy Industries Technical Review, Vol. 55, No. 4, pp. 1—5.

2. Mclarty, D., Brouwer, J. & Samuelsen, S. Hybrid fuel cell gas turbine system design and optimization. J. Fuel Cell Sci. Technol. August 2013. Vol. 10 (4), pp. 1—11. doi: https://doi.org/10.1115/1.4024569

3. Perna, A., Minutillo, M., Jannelli, E., Cigolotti, V., Nam, S.W. & Yoon, K.J. (2018, October). Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier. Appl. Energy, Vol. 227, pp. 80—91. doi: https://doi.org/10.1016/j.apenergy.2017.08.077

4. Rugg, D., Dixon, M. & Burrows, J. (2016, June). High-temperature application of titanium alloys in gas turbines. Material life cycle opportunities and threats — an industrial perspective. Materials at High Temperatures, Vol. 33 (4-5), pp. 536—541. doi: https://doi.org/10.1080/09603409.2016.1184423

5. Bewlay, B. P., Nag, S., Suzuki, A. & Weimer, M. J. (2016, June). TiAl alloys in commercial aircraft engines. Materials at High Temperatures, Vol. 33 (4–5), pp. 549— 559. doi: https://doi.org/10.1080/09603409.2016.1183068 ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 2 43

6. Wang, X. H. & Zhou, Y. C. (2010, May). Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol., Vol. 26 (5), pp. 385—416. doi: https://doi.org/10.1016/S1005-0302(10)60064-3

7. Firstov, S. A., Tkachenko, S. V. & Kuz’menko, N. N. (2009, July). Titanium “irons” and titanium “steels”. Met. Sci. Heat Treat., Vol. 51, pp. 12—18. doi: https://doi.org/10.1007/s11041-009-9119-7

8. Ostash, O. P., Ivasyshyn, A. D., Vasyliv, B. D. & Okun’, I. Yu. (2006, May). Hightemperature and cyclic corrosion crack resistance of alloys of the Ti—Si—Al—Zr system. Mater. Sci., Vol. 42 (3), pp. 330—343. doi: https://doi.org/10.1007/s11003-006- 0087-4

9. Tkachenko, S., Datskevich, O., Dvorak, K., Spotz, Z., Kulak, L. & Celko, L. (2017, October). Isothermal oxidation behavior of experimental Ti—Al—Si alloys at 700 оС in air. J. Alloys and Compounds, Vol. 694, pp. 1098—1108. doi: https://doi.org/10.1016/j.jallcom.2016.10.044

10. Shevchenko, О. М., Kulak, L. D., Kuzmenkо, M. M., Kotko, A. V. & Firstov, S. O. (2017). Doslidzhennya struktury zahartovanykh lytykh biosumisnykh stopiv Ti— 18Nb—хSi [Investigation of structure of the quenched cast biocompatible Ti—18Nb— хSi alloys]. Metallofiz. Noveishie Tekhnol., Vol. 39 (6), pp. 823—837 (in Ukrainian). doi: https://doi.org/10.15407/mfint.39.06.0823

11. Ostash, O. P., Podhurska, V. Y., Vasyliv, B. D., Kulak, L. D., Kuzmenko, M. M. & Fisk, A. E. (2020, August). Strength and corrosion-fatigue crack-growth resistance of alloys of the Ti—Nb—Zr—Si system intended for biomedical purposes. Mater. Sci., Vol. 55 (5), pp. 648—655. doi: https://doi.org/10.1007/s11003-020-00355-8

12. Firstov, S. O. & Gorna, I. D. (2018). Novi materialy na osnovi alyuminidiv tytanu [New materials based on titanium aluminides]. In Nauka pro materialy: dosyahnennya ta perspektyvy (pp. 546—571). In 2 vols. Eds. L. M. Lobanov et al.: NAS of Ukraine (ISBN 978-966-360-369-8). Kyiv: Akademperiodika (in Ukrainian).

13. Firstov, S. A., Gornaya, I. D., Podrezov, Yu. N., Bondar, A. A. & Sheremetyev, A. V. (2018). Svoystva splavov na osnove alyuminidov titana γTiAl/α2Ti3Al pri kompleksnom legirovanii [Properties of alloys based on titanium aluminides γTiAl/α2Ti3Al with complex alloying]. Spetsial’naya elektrometallurgiya, No. 3/4, pp. 28—32 (in Russian). doi: https://doi.org/10.15407/sem2018.03.05

14. Ivasyshyn, A., Ostash, O., Prikhna, T., Podhurska, V. & Basyuk, T. (2016). Oxidation resistance of materials based on Ti3AlC2 nanolaminate at 600 °C in air. Nanoscale Res. Lett., Vol. 11. Article No. 358. doi: https://doi.org/10.1186/s11671-016-1571-x

15. Prikhna, T., Ostash, O., Sverdun, V., Karpets, M., Zimych, T., Ivasyshin, A., Cabioc’h T., Chartier, P., Dub, S., Javorska, L., Podgurska, V., Figel, P., Cyboron, J., Moshchil, V., Kovylaev, V., Ponomaryov, S., Romaka, V., Serbenyuk, T. & Starostina, A. (2018). Presence of oxygen in Ti-Al-C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures. Acta Physica Polonica A, Vol. 133, No. 4, pp. 789—793. doi: https://doi.org/10.12693/APHYSPOLA.131.789

16. Podhurska, V., Brodnikovskyi, D., Vasyliv, B., Gadzyra, M., Tkachenko, S., Celko, L., Ostash, O., Brodnikovska, I., Brodnikovskyi, Ye. & Vasylyev, O. (2020). Ti—Si—C insitu composite as a potencial material for lightweight SOFC interconnects. In (Ed. V. Z. Barsukov) Promising Materials and Processes in Applied Electrochemistry (pp. 54—68), Kyiv: KNUTD.

17. Frangini, S., Mignone, A. & De Riccardis, F. (1994). Various aspects of the air oxidation behavior of a Ti—6Al—4V alloy at temperatures in the range 600—700 оС. J. Mater. Sci., Vol. 29 (3), pp.714—720. doi: https://doi.org/10.1007/BF00445984

18. ASTM E647-15e1. Standart test methods for measurement of fatigue crack growth rates, West Conshohocken: ASTM International, 2015. 19. Hanaor, D. A. H. & Sorrel, C. S. (2011, February). Review of the anatase to rutile phase transformation. J. Mater. Sci., Vol. 46 (4), pp. 855—874. doi: https://doi.org/10.1007/s10853-010-5113-0

20. Vojtech, D., Cizova, H., Jurek, K. & Maixner, J. (2005, May). Influence of silicon on high-temperature cyclic oxidation behavior of titanium. J. Alloys and Compounds, Vol. 394 (1–2), pp. 240—249. doi: https://doi.org/10.1016/j.jallcom.2004.11.019 44 ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 2

21. Reed T. B. (1971). Free energy of binary compounds. Cambridge: MIT Press.

22. Remez, M., Podrezov, Y., Danilenko, V., Danilenko, N. & Firstov, S. (2020). Krykhkoplastychnyy perekhid v alyuminidakh tytanu, lehovanykh β-stabilizatoramy [Brittle-ductile transition of titanium aluminides alloyed by β-phase stabilization elements]. Uspikhy materialoznavstva, Iss. 1, pp. 86—97 [in Ukrainian].

23. Ostash, O. P., Prikhna, T. O., Podhurska, V. Ya., Kuprin, O. S., Karpets, M. V., Sverdun, V. B., Vasyliv, B. D. & Serbenyuk, T. B. (2021). Lehki interkonnekty dlya seredn’otemperaturnykh (550-650 °С) palyvnykh komirok [Lightweight interconnects for medium temperature (550—650 °C) fuel cells]. Fiz.-khim. mekhanika materialiv, Vol. 57 (2), pp. (in Ukrainian).

24. Mockute, A., Dahlgvist, M., Hultman, L., Persson, P. & Rosen, J. (2013, May). Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations. J. Mater. Sci., Vol. 48 (10), pp. 3686—3691. doi: https://doi.org/10.1007/s10853-013-7165-4