Conferences

Brittle-ductile transition of titanium aluminides, alloyd by β-phase stabilization elements

M.Remez,
     

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
Yupodrezov@ukr.net
Usp. materialozn. 2020, 1:86-97
https://doi.org/10.15407/materials2020.01.086

Abstract

The temperature, structural, and rate sensitivity of the plasticity characteristics in γ-titanium aluminides with different Al contents, doped with β-phase stabilization elements, are studied. Particular attention is paid to dislocation mechanisms that control the brittle-plastic transition. The main role of grain boundaries in the formation of plasticity characteristics is demonstrated. At low temperatures, the grain boundaries stop propagation of brittle transgranular cracks and confine the development of the plastic zone beyond the boundaries of an individual grain, creating the prerequisites for fracture in the microdeformation level. At elevated temperatures, the boundaries contribute to the formation of dislocations pile-up in the plastic zone with a stress concentration required to set off the Frank-Reed sources and the displacement of the plastic zone beyond the boundaries of an individual grain, changing its configuration and stress distribution and inhibiting the propagation of cracks. Acceleration of relaxation processes in the vicinity of the crack’s tip creates the prerequisites for the development of macrodeformation. Local relaxation processes at the crack’s tip contribute to high speed sensitivity of the plasticity characteristics. This effect has important practical consequences, since there is a temperature region near the upper working temperature of γ-TiAl alloys, where the stress value remains high (yield strength σ02~ 700 MPa and ultimate stress σul ~ 1200 MPa at bending tests) regardless of the strain rate, while deformation sharply increases at low speeds. As a result, it is possible to achieve a combination of high strength and ductility during creep tests. In samples tested by tension with low speed (10-5 s -1) the neck formation take a place. Deformation occurs by the dislocation-twinning mechanisms. At small deformations (7%) a twinning mechanism is preferable. Concentration of dislocations sharply increases at large deformations (32%) with formation of dislocation clusters. Stress relaxation on the boundary between γ-phase twins and α2-lamella, occurs by macroscopic shift on α2-lamella.


Download full text

γ-TITANIUM-ALUMINIDES, BRITTLE-DUCTILE TRANSITION, PLASTICITY, STRENGTH, STRUCTURE, TEMPERATURE AND RATE SENSITIVITY

References

1. Clemens H., Mayer S. Design, processing, microstructure, properties, and applica¬tions of advanced intermetallic TiAl alloys . Adv. Eng. Mater. 2013. Vol. 15. P. 191-215.
https://doi.org/10.1002/adem.201200231

2. Mayer S., Erdely P., Dieter F., Holec D., Kastenhuber M., Klein T. and Clemens H. Intermetallic β-solidifying γ-TiAl based alloys. From Fundamental Research to Application Adv. Eng. Mat. 2017. P. 1-27
https://doi.org/10.1002/adem.201600735

3. Podrezov Yu.M. Kholiavko V.V., Remez M.V., Prokopchuk M.D. Temperaturna ta shvyd-kisna chutlyvist mekhanichnykh vlastyvostei splaviv TNM [Temperature and rate sensitivity of mechanical properties of TNM alloys]. World Science. November 2019. Vol. 1, No. 11 (51). P. 25-31 [in Ukrainian].
https://doi.org/10.31435/rsglobal_ws/30112019/6763

4. Remez M.V., Podrezov Yu.M., Bondar A.A., Vitusevych V.T., Khekht U., Tsyhanenko N.I. Bilous O.O., Petiukh V.M. Struktura ta vlastyvosti splaviv naosnovi TiAl, lehovanykh niobiiem i tantalum [Structure and properties of titanium aluminides, alloyed by niobium and tantalum]. Poroshkovaia metallurhyia. 2011. No. 7/8. P. 25-46 [in Ukrainian].

5. Trefylov V.Y., Mylman Yu.V., Fyrstov S.A. Fyzycheskye osnovy prochnosty tuhoplavkykh metallov [Physical foundations of the strength of refractory metals]. K.: Nauk. dumka. 1975. 315 p. [in Russian].

6. Podrezov Yu.N., Verbylo D.H., Danylenko V.I. Ekspres-metod prohnozuvannia dovho¬t-ryvaloi mitsnosti ta oporu povzuchosti v vysokotemperaturnykh splavakh na osnovi tytanu [Express method for predicting of long-term strength and creep resistance for high-temperature titanium-based alloys]. Elektronnaia mykroskopyia y prochnost materyalov. Kiev: In-t probl. materialovedeniya NAN Ukrainy. 2018.Issue 24. P. 35-46 [in Ukrainian].

7. Messerschmidt U. Dislocation Dynamics During Plastic Deformation. Springer Ser. in Mat. Sci., 2010. 503 p.
https://doi.org/10.1007/978-3-642-03177-9

8. Imayev V.M., Imayev R.M., Salishchev G.A. On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermetallics. 2000. No. 8 (1). P. 1-6.
https://doi.org/10.1016/S0966-9795(99)00065-5

9. Rice J.R., Thomson R. Ductile versus brittle behaviour of crystals. Phil. Mag. 1974. Vol. 29. P. 73-97.
https://doi.org/10.1080/14786437408213555

10. Borysovskaia E.M., Podrezov Yu.M., Koval A.Yu. Strukturnaia chuvstvytelnost treshchy-nostoikosty molybdena [Structural sensitivity of fracture toughness of molybdenum]. Matematycheskye modely y vychyslytelnyi eksperyment v materyalovedenyy. Kiev: In-t probl. materialovedeniya NAN Ukrainy. 2016. Issue 18. P. 110 [in Russian].

11. Fyrstov S.A., Borysovskaia E.M., Podrezov Yu.M. Dynamyka dyslokatsyi v polykrystalle pry nalychyy dysklynatsyonnoi stenky [Dislocation dynamics in a polycrystal with disclina¬tion wall]. Elektronnaia mykroskopyia y prochnost materyalov. Kiev: In-t probl. materia¬lovedeniya NAN Ukrainy. 2015. Issue 21. P. 7-13 [in Russian].

12. Kawabata T., Kanai T., Izumi O. Positive temperatute dependence of the yield stress in TiAl Ll, tipe superlattice intermetallic compound single crystals at 293-1273 K. Acta Metall. 1985. Vol. 33, No. 7. P. 1355-1366.
https://doi.org/10.1016/0001-6160(85)90245-7

13. Roberts S.G., Booth A.S. and Hirsch P.B. Dislocation activity and brittle-ductile transitions in single crystals. Mat. Sci. & Eng. 1994. Vol. A176. P. 91-98.
https://doi.org/10.1016/0921-5093(94)90962-8

14. Wang Yu., Lin T.L. Brittle-to-ductile transition temperature and its strain rate sensitivity in a two-phase titanium aluminide with near lamellar microstructure. J. Mat. Sci. 1999. Vol. 34. P. 3155-3159.

15. Wang Yu., Lin T.L. The effect of boron addition on brittle-to-ductile transition temperature and its strain rate sensitivity in gamma titanium aluminide. J. Mat. Sci. 2000. Vol. 35. P. 3083-3089.

16. Meshkov Yu.Ia., Pakharenko H.A. Struktura metalla y khrupkost stalnykh yzdelyi [Metal structure and brittleness of steel products]. Kyev: Nauk. dumka, 1985. 266 p. (in Russian).

17. Appel F., Paul J.D.H., Oehring M. Gamma titanium aluminide alloys. Sci. and Technology. Weinheim, 2011. 745 p.
https://doi.org/10.1002/9783527636204

18. Appel F., Clemens H., Fischer F.D. Modeling concepts for intermetallic titanium aluminides. Progress in Mater. Sci. 2016. Vol. 81. P. 55-124.
https://doi.org/10.1016/j.pmatsci.2016.01.001

19. Khantha M., Vitek V., Pope D. Srain-rate dependence of the brittle to ductile tran¬sition temperature in TiAl. Mat. Res. Soc. Symp. Proc. 2001. Vol. 646. P. 217-232.
https://doi.org/10.1557/PROC-646-N1.11.1