Conferences

Strain hardening of titanium alloys doped

 

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Omeliana Pritsaka str.,3, Kyiv, 03142, Ukraine
Modern Problems in Physical Materials Science - Kiev: Frantsevich Institute for Problems of Materials Science NASU, 2013, #22
http://www.materials.kiev.ua/article/1820

Abstract

The work is dedicated to study of deformation laws of hardening of some Ti-based alloys. It is also offered to use the definition of the parameter of deformation hardening n, which numerical value is possible to determine a phase, which controls deformation of a material, for study of features of deformation of complex alloyed Ti alloys (it is possible for them to change the ratio of α-, β- и ω-phases in wide range by alloying and thermo-mechanical treatment). The influence of phase structure of an alloy and morphology of phase components on numerical value of n is illustrated. The parameter of deformation hardening changes from 0,51 in a case of lamellar structures; when β-phase is located on borders of α-plates, to 0,81 in the case of globular morphology of β-phase. It is determined that for Ti β-alloys with BCC lattice the parameter n can change in an interval 0,5—1,0, in spite of the fact, that it is usual for BCC metals to have a parameter n = 0,5. It is caused by allocation of dispersed precipitations of the ω-phases inside β-grains, sharply reducing quantity of systems of sliding at deformation of an alloy. Alloys with initial stages of precipitations of ω-phases have the parameter n close to 0,5. Alloys with more complete precipitations of the ω-phases are characterized by a parameter n closing to 1.


ELECTRONIC MICROSCOPY, PHASE COMPOSITION, RESTRAIN DEFORMATION, THE DISLOCATION STRUCTURE, TITANIUM, TITANIUM ALLOYS